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My Applesoft Journey™ 
 
 
 

Introduction to My Applesoft Journey™ 
 
I was graduated with my Bachelor of Science degree in Electrical Engineering in June, 1982.  Having a 4.0 
GPA provided me with many opportunities in securing an engineering position.  Later that year, I decided 
to accept employment with Rockwell International in Downey, California.  I lived close to Downey so I 
was fortunate to have a rather short commute.  Of all the department managers who interviewed me, I 
selected to work under the manager of the Simulation Laboratory as an Initialization Engineer.  
Management encouraged all of the newly hired engineers to become familiar with Fortran 77 which had 
been recently released on the Nova computers by DEC.  I soon began to realize my affinity for this computer 
language and my multi-player Black Jack Fortran program was a hit among my colleagues.  Rockwell 
established a home computer purchase program for all employees the following year.  After careful 
consideration, I selected the Apple ][+ which included the AutoStart ROM.  In short order I mastered 
assembly language for the 6502 microprocessor and Applesoft BASIC.  By marrying assembly language 
routines with Applesoft programs using a tool I had developed which utilized that very technique, I 
advanced my knowledge of both languages far more quickly.  In 1985 I accepted an offer from Ken 
Williams to work as an assembly language programmer at Sierra On-Line in Oakhurst, California. 
 
I had become fascinated with numerical sort routines and very high speed graphic animation routines early 
in my computer language education, and Sierra On-Line was certainly the ideal environment to learn and 
to implement those and many other computer routines.  One of my later assignments was to assist in the 
development of HomeWord Speller, the companion home productivity product to HomeWord which had 
already been released.  My tasks included providing all of the diskette input and output routines and to 
develop the routines that would draw graphical icons on the HomeWord Speller initialization and 
configuration screens.  I had already designed many of the diskette input and output routines for my hybrid 
Applesoft programs that utilized embedded assembly language routines.  Developing the software to draw 
graphical icons was going to be a challenge.  I turned to the graphical routines in Applesoft for help. 
 
I developed a hybrid Applesoft program that could draw a collection of very simple High Resolution shapes 
like dots, vertical lines, horizontal lines, boxes, and parallel lines in order to create a complete and complex 
icon.  Williams said that I can always assume that his customers owned Apple computers that contained 
ROMs that were installed with Applesoft Version 2; that it was safe to utilize any ROM routine.  
Unfortunately, I found that if I utilized the Applesoft HRPLOT routine at 0xF457 and the HLIN routine at 
0xF53A, these routines do not correctly calculate the delta difference for the horizontal and the vertical start 
to end points for my particular use and requirements.  And so began my lifelong Applesoft journey. 
 
The BASIC language interpreter was certainly a wise choice for Apple Computer to purchase from the 
fledging Microsoft Corporation.  The interpreter code for their BASIC was small enough to occupy about 
0x2200 bytes of a 0x3000 byte Apple ][ ROM.  This gave Apple engineers around 0x600 bytes in order 
to include Low Resolution and High Resolution graphics that was unique vis-á-vis the Apple ][ hardware 
design.  The final 0x800 bytes was reserved for Steven Wozniak’s brilliant ROM Monitor.  The finished 
ROM that contains Microsoft’s BASIC interpreter and Apple’s graphic routines comprise Applesoft.  Apple 
Computer has yet to publish the source code for Applesoft.  Several publishers such as the Apple Orchard 
and Call A.P.P.L.E. have reprinted Applesoft Internals by John Crossley.  The Sander-Cederlof 
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DocuMentor has also been used to provide, perhaps, the most complete source code documentation for 
Applesoft internals.  Mr. Sander-Cederlof even includes his own personal comments within this 
documentation which identifies coding errors, routines that contain dangerous code under specific 
conditions, and routines that can utilize improvable code or replacement code.  It was many, many years 
after I had already sourced the Enhanced Apple //e ROM Monitor and the Applesoft interpreter when I 
came across the S-C DocuMentor for Applesoft.  Therefore, I have the benefit of both my own personal 
investigation into the Applesoft interpreter and the investigation of the Applesoft interpreter by Mr. Sander-
Cederlof.  I have taken all of the comments by Mr. Sander-Cederlof under advisement as I have made 
various modifications to my version of the Applesoft interpreter. 
 
I like to think of assembly language mnemonics such as LDA and STA as instructions.  And, I like to think 
of Applesoft tokens such as FOR and NEXT as statements.  Applesoft token numbers range from 0x80 to 
0xEA and these token numbers are always fixed to their assigned statement.  If a new statement could be 
added to Applesoft, that statement would always be interpreted as 0xEB.  If another new statement could 
be added, it would always be interpreted as 0xEC, and so forth.  If an Applesoft statement is ever made 
unusable, its token number can never be retired. 
 
Applesoft is heavily dependent on page-zero variables for many reasons, for example:  Applesoft occupies 
a ROM which can only be read and never written; there is no dedicated CX page of bytes for Applesoft 
variables and pointers as there are for slot cards; there is no dedicated TEXT page of bytes for Applesoft 
variables and pointers as there are for slot cards; all Applesoft variables and arrays require page-zero 
pointers for their administration; all Applesoft TEXT manipulation routines require page-zero variables and 
pointers; all Applesoft floating-point routines require page-zero multi-byte registers, variables, and 
pointers; and, all Applesoft graphic routines require page-zero variables and pointers.  Applesoft is heavily 
dependent on page-one, or the STACK, for many reasons, for example:  to tokenize instructions entered on 
the Apple Command Line; to display a line of Applesoft instructions and statements; to display a 
hexadecimal floating-point number as a base 10 number; to save the parameters for a defined function as it 
is utilized; and, to implement recursion.  For all of these and many more reasons, I have included all of the 
definitions for page-zero variables in Appendix A that are used in the ROM Monitor, in Applesoft, and in 
DOS 4.5.08H.  Appendix B lists all of the Applesoft statements, their token number, and the location in 
Applesoft where that statement is processed.  Appendix C contains all of the internal Applesoft entry 
locations for the modified version of Applesoft and whether these entry locations are the same or different 
in the unmodified version of Applesoft.  The modified version of Applesoft is available for download. 
 
 
 

Understanding the Deficiencies in 
Applesoft Mathematical Routines and Functions 

 
Applesoft mathematical routines and functions that operate on very small floating-point numbers can 
become problematic.  These routines and functions may exhibit non-commutative addition, non-
commutative multiplication, non-reflexive equality evaluation, irregularities of the exponent when the 
exponent is very small or very large, errors in the multiplication algorithm, errors in the binary to decimal 
conversion, and significant errors in the trigonometric functions that involve very small arguments.  Some 
intermediate arguments depend on a full 40-bit significand since these arguments utilize a guard byte.  On 
the other hand, some intermediate arguments are rounded and they are pushed onto the stack using only 
their 32-bit significand.  Rounding consists of simply inspecting the most significant bit of the guard byte 
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and if that bit is set, the 32-bit significand is incremented.  When addition, subtraction, or multiplication is 
initiated, only one operand uses a full 40-bit significand and the other operand uses a 32-bit significand.  In 
division, only the quotient has any extra significance having two additional bits.  Sticky bits are not utilized 
in Applesoft mathematical routines and functions in order to assist in making more intelligent numerical 
rounding decisions.  Since the cosine and the tangent trigonometric functions depend solely on the sine 
function, they are equally flawed if not more so.  The Applesoft mathematical routines and functions can 
provide acceptable results if very small or very large arguments are avoided and if the number of significant 
digits is limited to only what is acceptable given the total range of the floating-point numerical values for 
all Applesoft arguments. 
 
Applesoft arithmetic also contains known irregularities that were purposefully implemented, some in which 
the user would not be expected to anticipate.  These irregularities occur because certain decisions were 
made while designing the arithmetic algorithms.  Other irregularities may also occur unintentionally 
because of coding errors or software mistakes.  Non-commutative addition means that different results are 
obtained when the positions of the variables being added are exchanged.  Non-reflexive equality means that 
different evaluations are obtained when the positions of the variables being compared are exchanged.  When 
the exponent of a very small number is equal to -128, for example, a positive quotient will be obtained 
without regard to the sign of the divisor or the sign of the dividend.  When two consecutive variables are 
nearly zero and they are multiplied, their product is shifted to the right one extra bit.  Non-communicative 
multiplication issues are also confounded by decimal to binary and binary to decimal conversions where an 
identity might be expected but cannot be obtained.  Unless a Taylor series is utilized that has at least thirteen 
to fifteen iterations, the Applesoft sine function exhibits extremely poor accuracy for arguments that are 
near zero.  And, the Applesoft sine function generates 0 for all arguments that are greater than 0.5 ∗ 10!".  
Apparently, the flaw in the Applesoft sine function for an argument that is very large in value is due to the 
sine argument reduction algorithm.  And, as previously mentioned, the cosine and the tangent 
trigonometric functions are equally flawed since they are obtained by means of trigonometric identities that 
are solely based on the Applesoft sine function.  Therefore, it is vital that the engineer or the mathematician 
is aware of all of the numerical limitations of the algorithms that are implemented in Applesoft and how 
each function can affect the accuracy of Applesoft arithmetic.  And, the engineer or the mathematician must 
accommodate all of their complex floating-point variables, arrays, determinants, and inverse arrays for 
these Applesoft arithmetic irregularities.  The modified Applesoft eliminates most of these irregularities. 
 
 
 

Applesoft Variables 
 
Applesoft utilizes two areas of memory for numerical and character string variables that include the Simple 
Variables and the Array Variables, or Simple/Array Variables, or SAVs for short.  Figure 1 shows an 
example Applesoft program that resides in memory beginning at memory address 0x0801.  In that figure, 
Free Space exists because the Applesoft Program, its SAVs, and its Character String Pool do not exceed the 
value that is stored in HIMEM minus 0x0801, the memory address where the Applesoft program and all other 
regular Applesoft programs traditionally load into and reside in memory.  Applesoft also utilizes a large 
number of byte-pair memory locations in page-zero for its use.  Many of these memory locations are to 
store addresses in low/high byte order that can easily be used as pointers in memory management routines.  
Even though DOS 4.5.08H is capable of loading an Applesoft program into any selected memory location, 
DOS usually loads an Applesoft program into memory at address 0x0801, which is the value that is found 
in PRGTAB.  Using the size of the Applesoft program, DOS calculates the end address of the Applesoft 
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program and saves that information in PRGEND.  Initially, DOS sets VARTAB to PRGEND and Applesoft sets 
ARYTAB and STREND to PRGEND and FRETOP to HIMEM. 
 
 
 

Page-Zero Pointer 
Addresses Applesoft Program 

	 0x0000	

PRGTAB – 0x67:0x68	 0x0801	

 

Applesoft 
Program	 

 
 
  
 

PRGEND – 0xAF:0xB0 

	

VARTAB – 0x69:0x6A Simple 
Variables	

ARYTAB – 0x6B:0x6C 
 
 

STREND – 0x6D:0x6E 

Array 
Variables	

 	

 
 
 
 

Free 
Space	

 
 

FRETOP – 0x6F:0x70 

	

HIMEM – 0x73:0x74 Character 
String Pool	

	  
 
0xFFFF	

Figure 1.  Example Applesoft Program Layout in Memory 
 
 
 
When the Applesoft program begins to process its instructions, the program begins to create simple 
variables that include floating-point variables, integer variables, and character string variables.  These 
variables reside in the Simple Variables area of memory as simple descriptors whose memory address is 
found in VARTAB.  The definition of the descriptors for the variables that comprise the Simple Variables is 
shown in Table 1.  As more and more Simple Variable descriptors are added by Applesoft, the Array 
Variables area is pushed higher and higher up in memory that reduces the size of Free Space.  Simple 
Variable descriptors are always seven bytes in size, and depending upon the variable type, some of the 
descriptor bytes may not even be used.  Table 1 shows that floating-point numbers require all seven bytes 
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for the variable name, the exponent, and its 4-byte mantissa.  Integer numbers require only four bytes for 
the variable name and its value in high/low byte order, leaving the remaining three bytes initialized to 0.  
Finally, simple character string variables require five bytes for the variable name, the 8-bit length of the 
character string in bytes, and the memory address in low/high byte order where the character string 
resides in memory, leaving the remaining two bytes initialized to 0.  Obviously, a simple character string 
variable cannot contain more than 255 ASCII characters since the number of characters in the simple 
character string variable is limited to a single 8-bit quantity.  Applesoft programs should never define a 
character string variable to contain more than 255 ASCII characters. 
 
 
 

Variable 
Type 

Byte Definitions 
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 

Floating-point 
Number 

name1 
+ASCII 

65 

name2 
+ASCII 

66 
Exponent Mantissa 

Byte 1 
Mantissa 
Byte 2 

Mantissa 
Byte 3 

Mantissa 
Byte 4 

Integer 
Number 

name1 
-ASCII 

195 

name2 
-ASCII 

196 

High 
Value 

Low 
Value 0 0 0 

Simple 
Character 

String 

name1 
+ASCII 

69 

name2 
-ASCII 

198 

String 
Length 

Low 
Address 

High 
Address 0 0 

Table 1.  Simple Variable Descriptor Definitions in Applesoft 
 
 
 

Variable 
Type 

Byte Definitions 
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 

Floating-point 
Array 

name1 
+ASCII 

65 

name2 
+ASCII 

66 

Low 
Byte 

Offset 

High 
Byte 

Offset 

Number of 
Dimensions 

K 

Size of 
Kth Dim 

High Byte 

Size of 
Kth Dim 
Low Byte 

Size of 
K-1 Dim 

High Byte 

Size of 
K-1 Dim 
Low Byte 

Integer 
Array 

name1 
-ASCII 

195 

name2 
-ASCII 

196 

Low 
Byte 

Offset 

High 
Byte 

Offset 

Number of 
Dimensions 

K 

Size of 
Kth Dim 

High Byte 

Size of 
Kth Dim 
Low Byte 

Size of 
K-1 Dim 

High Byte 

Size of 
K-1 Dim 
Low Byte 

Character 
String 
Array 

name1 
+ASCII 

69 

name2 
-ASCII 

198 

Low 
Byte 

Offset 

High 
Byte 

Offset 

Number of 
Dimensions 

K 

Size of 
Kth Dim 

High Byte 

Size of 
Kth Dim 
Low Byte 

Size of 
K-1 Dim 

High Byte 

Size of 
K-1 Dim 
Low Byte 

Table 2.  Array Variable Descriptor Definitions in Applesoft 
 
 
 
The definition of the descriptors for Applesoft Array Variables is shown in Table 2.  As shown in Figure 1, 
the start address of the Array Variables area of memory is found in ARYTAB and the end address of the Array 
Variables is found in STREND.  This area of memory contains single and multi-dimensioned Array Variable 
descriptors for arrays of floating-point numbers, arrays of integer numbers, and arrays of character string 
variables.  Table 2 shows an example variable descriptor that has two dimensions.  Successive Array 
Element dimension sizes precede each other with the first-dimension size in high/low byte order always 
coming last.  The Array Variable descriptor grows in size as the number of dimensions increase in value.  
The nominal size of an Array Variable descriptor is seven bytes for a single dimension array.  The descriptor 
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increases in size by two additional bytes for each added dimension.  Therefore, the dimension value that is 
found in Byte 5 of the Array Variable descriptor becomes a critical piece of information that is used to 
calculate where the Array Elements begin and where they end relative to the address of their Array Variable 
descriptor.  The maximum number of dimensions for an Array Variable descriptor is 255 since this variable 
is limited to an 8-bit quantity.  Applesoft limits the number of dimensions for an array to eighty-eight. 
 
 
 

Element 
Type 

Byte Definitions 
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 

Floating-point 
Number 
Element 

Exponent Mantissa 
Byte 1 

Mantissa 
Byte 2 

Mantissa 
Byte 3 

Mantissa 
Byte 4 

Integer 
Number 
Element 

High 
Value 

Low 
Value    

Character 
String 

Element 

String 
Length 

Low 
Address 

High 
Address   

Table 3.  Single Array Element Descriptor Definitions in Applesoft 
 
 
 
Bytes 3 and 4 of the Array Variable descriptor give the offset in bytes to the beginning of the next, if any, 
Array Variable descriptor relative to the address in memory where this Array Variable descriptor is located.  
The Array Elements that belong to an Array Variable descriptor begin immediately after the descriptor 
whose descriptor size can easily be calculated knowing the value in Byte 5, or 5 + (value in Byte 5) * 2.  
The definition of each Array Element for each type of Array Variable descriptor is shown in Table 3.  These 
Array Element definitions are essentially the same as the definitions for the respective Simple Variable 
descriptors that are shown in Table 1 without including the name of the array variable.  Obviously, the name 
for all of the Array Elements is the same, and this name is found only in its Array Variable descriptor.  The 
Array Element for arrays of floating-point numbers is five bytes in size and it contains the exponent of the 
floating-point number and its 4-byte mantissa.  The Array Element for arrays of integer numbers is two 
bytes in size and it contains its integer value in high/low byte order.  The Array Element for arrays of 
character string variables is three bytes in size and it contains the 8-bit length of the character string in bytes 
and the memory address in low/high byte order where the character string resides in memory.  It should be 
apparent that all of the character string elements of a character string array do not necessarily have to contain 
the same number of characters, but any single character string element cannot contain more than 255 
characters since its string length variable is limited to a single 8-bit quantity.  Applesoft programs should 
never define a character string element to contain more than 255 ASCII characters. 
 
Quite often an Applesoft program contains the text of some character string variable.  As long as there is 
no text operation on that character string variable such as A$ = A$ + B$, for example, the string pointer 
address that is found in the Simple Variable or in the Array Element descriptor points to the actual character 
string data that is within the memory contents of the Applesoft program.  In order for this character string 
variable or array element variable to be available, for example, to a Chained program, the actual character 
string data must be relocated into the Character String Pool.  A simple way to force this character string 
relocation is to perform some menial data operation on that character string variable or that array element 
variable, such as A$ = A$ + "" or A$(0) = A$(0) + "".  This simple operation does nothing to the character 
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string A$ or to A$(0) except to cause the actual data of A$ or A$(0) to be copied from within the contents 
of the Applesoft program into the contents of the Character String Pool. 
 
The Character String Pool that is used in Applesoft to hold character string variables can create many side 
effects after character string variables have been processed in multiple ways.  Bit and pieces of old character 
string data that have no descriptor as a result of this processing can clutter the Character String Pool.  This 
additional string data clutter reduces the size of the Free Space and this can have a direct effect on the 
processing speed of many Applesoft string operations.  When Free Space reaches a critical limit in size, 
Applesoft automatically calls the GARBAG routine that attempts to clear out all of the character string data 
that have no string descriptor.  Many Garbage Collection algorithms have been previously published that 
accomplish the same results as GARBAG in far less time, but there can be a number of caveats when using 
some of these algorithms.  For instance, normal Applesoft programs save all character string data in lower 
ASCII where the MSB is clear for each character byte in the string.  And, normal Applesoft programs never 
allow more than one character string descriptor to point to the same character string data in memory.  
Multiple character string variable and array element descriptors may each point to identical character string 
data sets, but these identical sets of character string data must reside at different memory locations.  Some 
Garbage Collection algorithms depend upon these constraints.  If either constraint is not found to be true, a 
catastrophe will happen during the course of subsequent Applesoft processing!  Of course, if the character 
string data of an Applesoft program is kept normal and these constraints are observed, there will be no 
subsequent processing problems.  If assembly language routines, possible appendages to the Applesoft 
program itself, or other code segments perform exotic manipulations to the character string descriptors or 
to the contents of the Character String Pool, these constraints might very well be violated. 
 
 
 

Applesoft Floating-Point Variables 
 
Applesoft conducts all of it numerical processing, even for obvious integers such as those that are used in 
FOR/NEXT loops, using only floating-point variables.  Signed 16-bit integer variables and arrays are provided 
in Applesoft, and an integer variable may be utilized in most Applesoft statements.  Unlike other floating-
point number notations such as IEEE 754, the Applesoft exponent utilizes all eight bits for its value and it 
utilizes the most significant bit in its mantissa for the sign bit, and if that bit is OFF, the respective floating-
point number is positive.  The bias that is included in the exponent is utilized in order to represent very 
large and very small numbers.  As in other floating-point number notations, the mantissa utilizes an implicit 
high-order one bit to yield a full 32-bit significand.  An Applesoft floating-point number typically provides 
a numerical range from 10#$% to 10&$% and it has, at most, nine digits of accuracy.  When using floating-
point numbers in Applesoft, those numbers must be within this numerical range or Applesoft will flag an 
error or simply convert the number to 0.  Applesoft understands scientific notation when a floating-point 
number is either too small or too large to express that number in decimal form.  The format of Applesoft 
scientific notation is SD.FFFFFFFFESTT for an Applesoft floating-point number.  Both the single digit 
decimal number D and the double digit exponent TT utilize the sign bit S.  If the floating-point number is 
positive, no plus + sign is used before that single digit D.  However, the sign of the exponent TT is always 
expressed in Applesoft scientific notation whether the exponent is positive or negative.  The letter E 
separates the fractional part FFFFFFFF of decimal number D from its exponent TT.  The fractional part 
FFFFFFFF of decimal number D contains eight numerical digits at most.  Applesoft does not identify 
IMAGINARY floating-point numbers differently from REAL floating-point numbers.  And, Applesoft does 
not define or provide any resources for either double precision integer numbers or double precision floating-
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point numbers whether they are REAL or IMAGINARY.  The modified Applesoft always prefaces a small 
floating-point number that is in decimal form with a 0 unless scientific notation is used otherwise. 
 
Integer numbers as large as 1,048,576 or 220 can be precisely expressed as an Applesoft floating-point 
number.  The Applesoft integer to floating-point and the floating-point to integer conversion routines are 
designed to conduct these particular conversions without residual error.  In fact, it is very straightforward 
to convert an integer number into an Applesoft floating-point number.  For example, take the decimal 
number 937 and convert that number to hexadecimal, or 0x3A9, and then to binary, or %001110101001.  
Express that binary number into a mantissa of four bytes, or %00000000000000000000001110101001.  
Count the number of zero-bits until the first one-bit is reached, or 22, which is 0x16.  Since the maximum 
value for the floating-point exponent for 220 is 0xA0, subtract the zero-bit count from 0xA0, or 0xA0 - 0x16 
= 0x8A.  Once the exponent is calculated, those first 22 zero-bits can be removed.  That first one-bit that 
was encountered when counting the number of zero-bits is called the implicit high-order one bit and the 
sign bit is substituted for that implicit high-order one bit.  In this example, the sign bit is positive, so that 
first mantissa bit becomes a zero-bit.  The resulting floating-point value becomes 0x8A6A400000.  It is 
easier to see the original integer, or %001110101001, when the entire floating-point number is expressed 
as a complete binary number that contains a space character between each byte: 
 

%10001010 01101010 01000000 00000000 00000000 
 
The reverse conversion of this floating-point number extracts the first bit of the mantissa as the sign bit and 
replaces this bit as the implicit high-order one bit.  The exponent is subtracted from 0xA0 and the mantissa 
is shifted to right that many bits as shown: 
 

%10011010 00000000 00000000 00000011 10101001 
 
The third and fourth bytes of the mantissa contain the integer value for the original decimal number 937. 
 
 
 

Management of Applesoft Floating-Point Registers 
 
Applesoft utilizes a number of floating-point registers in order to assist the various floating-point routines 
that comprise all of the mathematical functions that are available in Applesoft.  The primary Applesoft 
floating-point register is FAC and the secondary floating-point register is ARG.  Both of these floating-point 
registers consist of five bytes where the first byte is used for its exponent and the next four bytes are used 
for its mantissa.  Both FAC and ARG each utilize an 8-bit guard byte.  The guard byte for FAC is FACGUARD 
and the guard byte for ARG is ARGGUARD.  Both of these guard bytes are utilized in all four primary 
mathematical functions, that is, in addition, in subtraction, in multiplication, and in division.  FACGUARD is 
utilized to hold the final guard byte value once the mathematical function is complete.  The Applesoft 
addition function uses FAC and ARG for the addends and the function puts their sum into FAC.  The Applesoft 
subtraction function uses ARG for the minuend and FAC for the subtrahend and the function puts their 
difference into FAC.  The Applesoft multiplication function uses ARG for the multiplicand and FAC for the 
multiplier and the function puts their product into MULMANT which is a four-byte register that holds only the 
floating-point mantissa.  The Applesoft division function uses ARG for the dividend and FAC for the divisor 
and the function puts the quotient into FAC.  The exponents for both addition and subtraction are handled 
by a common routine that normalizes their exponents to equality.  The exponents for multiplication and for 
division are handled by a different common routine that adds or subtracts the exponents. 
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Polynomial processing utilizes TEMP1 and TEMP2 which are also five-byte floating-point registers.  The 
Applesoft SINE, COSINE, ARCTANGENT, and exponential function all use polynomial processing.  The 
Applesoft TANGENT function utilizes TEMP3 in addition to the other two temporary floating-point registers.   
TEMP3 is a six-byte floating-point register and its fifth mantissa byte is utilized for its 8-bit guard byte, 
T3GUARD.  The Applesoft square root function, or SQR requires TEMP1 and TEMP3.  Polynomial processing 
had limited usage for guard bytes since TEMP1 and TEMP2 do not have associated guard bytes.  After careful 
review of TEMP1 and TEMP2 utilization, I found that TEMP1 is used to hold the rounded user input value for 
SQR, to obtain the next 5-byte polynomial value in polynomial processing, or to hold the rounded user input 
range value for RND.  TEMP2 is used to hold the initial X or X2 term during active polynomial processing.  
My review shows that mathematical accuracy would not benefit if TEMP1 utilized a guard byte.  However, 
mathematical accuracy in polynomial processing would definitely benefit if TEMP2 utilized a guard byte.  
Since TEMP2 is utilized only in this single intensely mathematical processing function, I found that it was 
possible to incorporate an 8-bit T2GUARD byte when the FAC register is copied to the TEMP2 register and 
when the TEMP2 register is copied to the ARG register.  The T2GUARD byte becomes a critical component in 
maintaining the mathematical accuracy in polynomial processing in the modified Applesoft. 
 
 
 

Memory Name Description 
0xDE23 FRMSTAK3 Push FAC and FACGUARD onto the STACK; jump to (INDEX) 
0xDE40 NOTMATH4 Pull ARG, ARGGUARD, ARGSIGN from STACK; set FACSIGN and XORSIGN; load FACEXP 
0xE3AF FNCDATA Pull five numerical bytes from STACK into (FUNCNAM) indexed by Y-register 
0xE9E3 LOADARG Copy	five	bytes	from	(INDEX)	into	ARG; set	ARGSIGN, XORSIGN, and ARGGUARD	
0xEAE6 COPYM2F Copy four bytes from MULMANT into FACMANT; normalize the exponent 
0xEAF9 LOADFAC Copy five bytes from (INDEX) into FAC; set FACSIGN and FACGUARD 
0xEB1E COPYF2T2 Copy (TEMP2) into INDEX; copy FAC into (INDEX); set FACSIGN; leave FACGUARD alone 
0xEB21 COPYF2T1 Copy (TEMP1) into INDEX; copy FAC into (INDEX); set FACSIGN; leave FACGUARD alone 
0xEB27 COPYF2FR Copy (FORPNT) into INDEX; copy FAC into (INDEX); set FACSIGN; leave FACGUARD alone 
0xEB2B COPYFAC Call RNDUP; copy FAC into (INDEX); set FACSIGN; leave FACGUARD alone 
0xEB53 COPYA2F Copy ARGSIGN to FACSIGN; copy ARG to FAC using indexed loop; set FACGUARD 
0xEB63 COPYF2A Copy FACSIGN to ARGSIGN; copy FAC to ARG; set ARGGUARD 
0xF1BA COPYF2T3 Copy (TEMP3) into INDEX; call COPYFAC2, avoid RNDUP; copy FACGUARD to T3GUARD 
0xF695 COPYT32A Copy (TEMP3) into INDEX; call LOADARG; copy T3GUARD to ARGGUARD 

Table 4.  Routines That Copy Floating-Point Registers or Numbers 
 
 
 
The first three floating-point data transfer routines that are shown in Table 4 are used to push FAC onto the 
STACK, pull ARG from the STACK, or pull numerical data from the STACK and save that data to a specific 
memory location as a floating-point number.  These routines push or pull numerical data onto or from the 
STACK byte by byte in order to affect the fastest data transfer rate at the expense of Applesoft space.  The 
FRMSTAK3 routine pushes the entire contents of the FAC register onto the STACK after RNDUP is called.  I 
modified this routine to push FACGUARD onto the STACK rather than call RNDUP.  Its complement routine 
NOTMATH4 transfers floating-point data that is on the STACK into the ARG register, and I also modified this 
routine to pull ARGGUARD before it pulls ARGSIGN from the STACK.  FNCDATA is a routine that pulls a 
floating-point number from the STACK and copies that number to memory whose address resides in 
FUNCNAM.  And, in addition to those three routines, there are eleven routines that copy the contents of one 
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of the five floating-point registers to memory, or memory to one of the registers, or one register to another 
register.  Ten of these data transfer routines copy numerical data to or from a floating-point register byte by 
byte in order to affect the fastest data transfer rate at the expense of Applesoft space.  The COPYA2F data 
transfer routine, however, favors Applesoft space at the expense of numerical data transfer rate and this 
routine is only utilized by POWER.  Actually, ADD uses COPYA2F in order to return the value that is in the 
ARG register when the FAC register is 0.  I did unwind the COPYF2A data transfer routine that utilized an 
indexed register loop because this routine is used by many functions.  However, it was not necessary to set 
the data transfer loop indexing register to its terminating value.  Table 4 presents all of these floating-point 
copy routines, their location in Applesoft, their names, and a brief description of their function in the 
modified Applesoft. 
 
 
 

Page Topic Description 
0xC0 I/O Memory, video, and slot card management soft switches. 

0xC1-0xC2 Monitor Support ROM Monitor input and 40/80-column output support routines. 
0xC3 Video Output Claims 0xC8:CF space; cannot be used by 0xF8:FF routines. 
0xC4 Interrupt Handler Apple //e configuration is captured; the interrupt handled; system is restored. 
0xC5 STEP and TRACE Mini-assembler routines. 

0xC6-0xC7 GARBAG; SWEET16 Several garbage collection routines and SWEET16 Metaprocessor. 
0xC8-0xCE 40/80 column handlers Routines to display 40 and 80 columns. 

0xCF STEP and TRACE Mini-assembler routines. 
0xD0-0xD3 Addresses and Names Applesoft statement addresses, names, and error messages. 
0xD4-0xD6 Interpreter Applesoft interpreter, restart, parser, tokenizer, memory management 
0xD7-0xD8 Routines FOR, TRACE, RESTORE, STOP, END, CONT, LOAD, RUN routines 
0xD9-0xDA Routines RUN, GOSUB, GOTO, RETURN, POP, DATA, REM, LET, PRINT routines 
0xDB-0xDF Routines GET, INPUT, READ, NEXT, PDL, DIM routines 
0xE0-0xE6 Routines POS, DEF, STR$, GARBAG, CHR$, LEFT$, RIGHT$, MID$, LEN, ASC routines 
0xE7-0xEB Routines VAL, PEEK, POKE, WAIT, SUB, ADD, LN, MULT, DIV, SGN routines 
0xEC-0xEF Routines ABS, INT, FPOUT, SQR, POWER, EXP, LOG, PI, RND, COS, SIN routines 
0xF0-0xF1 Routines TAN, ATAN, CHRGET, COLDSTRT, CALL, IN, PR routines 

0xF2 Routines PLOT, HLIN, VLIN, COLOR, VTAB, SPEED, TRACE, NOTRACE routines 
0xF3 Routines INVERSE, FLASH, HIMEM, LOMEM, ONERR, RESUME, DEL, GR routines 
0xF4 Routines TEXT, READ, HGR2, HGR, POSN, HRPLOT routines 

0xF5-0xF6 Routines HLIN, DRAW, XDRAW routines 
0xF7 Routines HCOLOR, HPLOT, ROT, SCALE, TITLE, 40/80 column patches, HTAB routine 

0xF8-0xFF ROM Monitor Modified ROM Monitor that supports 40/80 column display routines. 

Table 5.  General Layout of the C0:FF ROM 
 
 
 

Introduction to Applesoft Source Code 
 
The general layout of the Apple //e ROM, that is, the CXROM addition, the Applesoft interpreter, and the 
ROM Monitor is shown in Table 5.  The COLDSTRT routine that is shown in boldface in Table 5 appears to 
complete Version 1.1 that Apple Computer purchased from Microsoft as Applesoft I, the 6502 BASIC 
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interpreter.  The Applesoft statements that follow the COLDSTRT routine begin in the 0xF2 page and they 
handle the unique LORES and HIRES graphic commands which were provided by Randy Wigginton and 
Cliff Huston.  The Applesoft interpreter that was provided in the Enhanced Apple //e uses the last half of 
the 0xF7 page for patches that support 40-column and 80-column displays and to provide a correctly 
functioning Applesoft HTAB statement.  I have not changed the entry location address for any of the 
Applesoft statements.  What I have changed are the routines that are used by these Applesoft statements. 
 
I approached this journey through Applesoft as I have done countless numbers of times when I have 
explored, learned, and modified the software that has been written by other programmers or other software 
engineers.  I am a professional software engineer because I have made my living at developing software 
products for several aerospace companies.  And, I have written all of the software for those software 
products in various assembly languages, Fortran, or in C language.  I did restrict myself to only utilizing 
ANSI C language because most of my software products were required to process data in real time.  Some 
of the computer platforms that I have utilized for my software products include the BBN Butterfly, SEL 
Encore computers, SUN Microsystems workstations, and the SGI Origin 2000 and 3000 series of 
mainframes.  Several of my software products as well as an Origin 2000 were installed on the Raytheon 
Multi-Program Testbed, or, the RMT which is a Boeing 727 that is used to fly on various sorties along with 
various government sponsors.  I consider myself more than well equipped to understand the 6502 assembly 
language that was used to write the Applesoft interpreter.  I am more than able to discern errors in the use 
of the 6502 assembly language and in algorithm logic, and I can discern illogical software structure, order, 
and format.  Furthermore, I am fully capable of explaining the function of an Applesoft software algorithm. 
 
I begin my journey through Applesoft with several goals in mind.  First and foremost, I want to ensure that 
each Applesoft mathematical function can produce the most reliable solution having at least ten digits of 
accuracy even though only nine digits can be presented at any given time.  In order to accomplish this goal, 
I place a strong emphasis on utilizing guard bytes in every possible calculation and in every series of 
calculations.  I want to remove the rounding of a floating-point variable at all times during consecutive 
calculations until that variable must be rounded before it is written to memory and presented to the user.  I 
want to add additional statements to the Applesoft language repertoire in order to increase the precision of 
the Applesoft language.  And, above all, I want to repair or to replace the ill-informed as well as the 
uninformed software decisions that I found laced throughout the Applesoft language that contributes to the 
generation of mathematical errors.  Of course, the C0:FF ROM contains only so much real estate for 
changes, for additions, and for improvements to its software routines.  When any duplicated software logic 
is uncovered, the possibilities to insert software changes, additions, and improvements into the Applesoft 
language become more probable.  That is when I become driven by excitement and eagerness to install new 
modifications in order to deliver an Applesoft language that has far more accuracy.  Without having any 
explanations for the fabricated, concocted, and aberrant polynomials that are used for the processing of 
Applesoft transcendental functions, these functions are particularly problematic even when many other 
mathematical modifications are utilized.  Perhaps better solutions can be found by others after having read 
and studied the details of my journey through Applesoft. 
 
 
 

The Applesoft Statements 
 
The Applesoft language is designed around 107 commands which I designate as Applesoft statements.  
These statements can be categorized into three main groups.  The first category of Applesoft statements are 
those that perform a particular function, like END or FOR or HCOLOR= or HIMEM:.  These statements do not 
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require evaluating an expression that is enclosed by parenthesis.  This first category of statements is called 
the BASIC statements and I preface a B in front of each of their software labels.  There are sixty-four BASIC 
statements.  The list of sixty-four two-byte fully qualified addresses for the software labels of the BASIC 
statements begins the Applesoft source code at 0xD000.  The token numbers or identification numbers for 
all Applesoft statements begin with the number 0x80, that is, with numbers that have their most significant 
bit set.  All other ASCII data in the form of numbers and strings in an Applesoft program have their most 
significant bit clear.  In order to calculate the token number that is associated with each BASIC statement, 
Applesoft takes the least significant byte of the BASIC address where the two-byte label address is found 
where that statement is processed in memory, divides that BASIC address byte by two, and then adds 0x80.  
For example, the Applesoft BASIC statement POKE is processed at 0xE77A.  That address, 0xE77A, is found 
in the list of two-byte BASIC addresses at 0xD072.  Thus, the token number for POKE is 0x72 / 2 + 0x80 = 
0xB9 or 185.  The token numbers for the BASIC statements begin with 0x80 and they end with 0xBF. 
 
The next category of statements is called the FUNCTION1 statements and I preface an F in front of each of 
their software labels.  There are twenty-two FUNCTION1 statements.  The FUNCTION1 statements are those 
Applesoft statements which contain an expression that has a numerical value and that expression is enclosed 
by parenthesis.  That numerical expression must be evaluated before Applesoft can process the statement.  
The list of twenty-two two-byte fully qualified addresses for the software labels of the FUNCTION1 
statements begins at 0xD080 which follows the two-byte addresses for the BASIC statements.  Examples of 
FUNCTION1 statements are SGN(), PDL(), and ASC().  In order to calculate the token number that is 
associated with each FUNCTION1 statement, Applesoft takes the least significant byte of the FUNCTION1 
address where the two-byte label address is found where the statement is processed in memory, divides that 
address byte by two, and then adds 0x92.  For example, the software label address for the Applesoft 
FUNCTION1 statement PEEK is 0xE764.  That address, 0xE764, is found in the list of two-byte addresses at 
0xD0A0 and the token number for PEEK is 0xA0 / 2 + 0x92 = 0xE2 or 226.  The token numbers for the 
FUNCTION1 statements begin with 0xD2 and they end with 0xE7. 
 
The last three statements are the FUNCTION2 statements and they include the LEFT$, RIGHT$, and MID$ 
statements.  These statements also contain an expression that is enclosed by parenthesis which must be 
evaluated before Applesoft can process the statement.  However, the expression for these statements are 
more complex than the FUNCTION1 statements because these expressions contain two or three string 
variables rather than a single numerical variable as found in the FUNCTION1 statements.  The token number 
for FUNCTION2 statements is calculated in the same way as token number is calculated for FUNCTION1 
statements.  The token numbers for the FUNCTION2 statements begin with 0xE8 and they end with 0xEA.  
Applesoft token parsing happens to end with the FUNCTION2 statements.  The modified Applesoft, however, 
contains two additional statements that follow the FUNCTION2 statements and these two statements are 
processed like FUNCTION1 statements.  These two statements include the LN statement and the PI statement. 
 
The Applesoft statement SCRN( is syntactically not a FUNCTION1 statement because it contains two 
numerical expressions that are separated by a comma rather than a single numerical expression.  And, the 
SCRN( statement is syntactically not a FUNCTION2 statement because its two expressions contain numerical 
variables rather than string variables.  The UNARY function at 0xDF0C processes all FUNCTION1 and 
FUNCTION2 Applesoft statements, but UNARY extracts the SCRN( statement first with no further processing 
in the unmodified Applesoft. 
 
The last category of statements is called the Operator TAG statements and I preface an O in front of each 
of their software labels.  There are ten TAG statements.  The TAG statements are those statements which 
perform a mathematical operation or some sort of mathematical comparison.  The list of their precedence 
codes and their two-byte fully qualified addresses for the software labels of the TAG statements begins at 
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0xD0B6 in the modified Applesoft which follows the two-byte addresses for the FUNCTION statements.  
Examples of TAG statements are +, AND, and <.  The precedence code is the value that Applesoft uses in 
order to determine the processing order for various variables and TAGs when Applesoft evaluates a complex 
mathematical expression.  The precedence codes range from 0x46 for OR to 0x7F for =.  Applesoft extracts 
the precedence code first and then it extracts the address bytes for the selected routine that processes that 
TAG statement.  The token numbers for the TAG statements begin with 0xC8 and they end with 0xD1. 
 
The remaining eight Applesoft statements use the token numbers from 0xC0 to 0xC7.  These statements 
appear to be a group of catch-all statements that include FUNCTION-like statements and statements that are 
ancillary to other Applesoft statements.  For example, the statements TAB( and SPC( look very much like 
FUNCTION1 statements, FN can only be used after it has been defined by DEF, and TO, THEN, AT, NOT, and 
STEP must be used ancillary to other Applesoft statements.  These Applesoft statements are not listed with 
a two-byte fully qualified address because these statements are parsed while the Applesoft interpreter is 
processing other Applesoft statements.  These Applesoft statements are usually identified when and if 
Applesoft would logically find their occurrence, utilize their occurrence, or require their occurrence. 
 
I have previously stated that I have added two additional statements to the Applesoft language repertoire 
which includes the PI statement with token number 0xEB and the LN statement with token number 0xEC.  
The first statement that I added to Applesoft is the PI statement, and this statement simply loads the FAC 
floating-point register as well as its guard byte FACGUARD with the 48-bit value of p.  The second statement 
that I added to Applesoft is the LN statement.  The unmodified Applesoft calculates the natural logarithm 
for the Applesoft LOG statement which is somewhat of a misnomer.  In engineering, especially in Electrical 
Engineering, the logarithm of a number is the exponent to which a base must be raised in order to produce 
that number.  Therefore, in order to differentiate the natural logarithm which is based on 𝑒 and the logarithm 
which is based on 10, LN is used for the natural logarithm and LOG is used for the base-10 logarithm.  In the 
modified Applesoft, the LN statement produces the same values that the LOG statement produces for the 
same arguments in the unmodified Applesoft.  In the modified Applesoft, the LOG statement multiplies what 
the LN statement produces by the floating-point variable base-10 LOG (𝑒).  I added both of the two-byte 
fully qualified label addresses for the new PI and LN Applesoft statements at 0xD0B2 and 0xD0B4, 
respectively, which comes after the address for MID$ and before the Operator TAG addresses.  Adding 
these two addresses changes the location for BASNAME by four bytes which is where all of the Applesoft 
statement names are listed in DCI format. 
 
All Applesoft statements are reserved words for the Applesoft interpreter.  For example, if one should define 
a variable such as GR = 32, the Applesoft interpreter will first initiate LORES graphics and then issue a 
Syntax Error in the offending line where the GR statement is incorrectly used for the name of a variable.  
I find it interesting that the Applesoft language developers thought that it was necessary to add particular 
suffixes to some Applesoft statements, suffixes like =, :, and (.  I can understand, perhaps, why $ was 
added to the string processing statements in order to identify their intention and ultimate purpose.  I suppose 
not having to evaluate the = TAG followed by a parameter does reduce some little processing, so why not 
use = rather than : for HIMEM: and LOMEM:?  The CHKOPNP routine at 0xDEBB that checks for an open 
parenthesis is already in place, so why add the open parenthesis to TAB(, SPC(, and SCRN( and not to all of 
the FUNCTION statements or none of the FUNCTION statements?  I imagine that each of the many Applesoft 
language developers had their own reasoning and their own rationale for the ownership of the various 
routines that processed statements that were under their direction, and even control over the  statement 
name itself.   There might have even existed a statement playbook that went so far as to already spell out 
the characters that are used for each Applesoft statement.  Certainly, how much thought was given to how 
these naming peculiarities might affect the overall development of the Applesoft interpreter?  I do find it 
interesting when I conjure up possible explanations for some of these very awkward statement names. 
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Disabling an Applesoft statement does not remove the address requirement for some sort of alternate 
processing that must always be assigned to that token number.  Applesoft programs that were previously 
developed have already been tokenized using an unmodified Applesoft, that is, the Applesoft statements 
have already been converted to their assigned token numbers.  These programs are intended to execute in 
their tokenized form at any time and on any Apple ][ computer.  Thus, disabling an Applesoft token number 
that is assigned to an Applesoft statement consists of two tasks:  substituting another name for the Applesoft 
statement in BASNAME in order to prevent the use of that token number and substituting a different software 
routine for that token number if it should be parsed in an Applesoft program.  Clearly, listing an Applesoft 
program using a modified Applesoft that has disabled certain token numbers would not produce a 
meaningful version of that program.  And, when executed, that program would certainly not produce many 
of the intended results.  It is simply not possible to incorporate new functionality into a space that has a 
fixed size without discarding something that is less desirable.  I have chosen to discard all of the cassette 
recorder Applesoft write statements and some of the cassette recorder Applesoft read statements.  The list 
of Applesoft statements that I have discarded include SHLOAD, RECALL, STORE, and SAVE, and their 
respective token numbers are 0x9A, 0xA7, 0xA8, and 0xB6.  I have chosen to only retain the cassette 
recorder Applesoft read statements LOAD and RUN in order to support Insta-Disk and c2t processing.  These 
two magnificent routines, Insta-Disk and c2t processing, were both designed and developed by Egan Ford.  
Refer to my book DOS 4.5 Volume and File Disk Management System Second Edition for a detailed 
discussion on Insta-Disk software, Insta-Disk disk images, and the c2t C language software that creates the 
Insta-Disk disk images.  The SHLOAD statement has become a DOS 4.5.08H command and this command 
also includes several options.  The DOS SHLOAD command provides the ability to load the data of a SHAPE 
table from a diskette into memory for the purpose of drawing HIRES shapes.  I have also developed the 
companion SHSAVE command for DOS 4.5.08H, and this command provides the ability to save the data of 
a SHAPE table onto a diskette.  See Appendix D for using the DOS SHSAVE and the DOS SHLOAD commands. 
 
BASNAME begins at 0xD0D4 in the modified Applesoft.  This is where the Applesoft interpreter begins its 
search for every ASCII string that is not enclosed within double quotes when the interpreter is tokenizing 
an input line of Applesoft.  When an ASCII string is found within this table, that string is replaced by the 
number that resides in a statement counter before that line of Applesoft is inserted into the Applesoft 
program by virtue of its given line number.  Certainly, in order to accomplish any of the goals set forth in 
this Applesoft journey, additional Applesoft space must be found or created.  In concert with finding this 
space is the desire to disable specific Applesoft statements.  The GR command happens to occur early in 
BASNAME and this command has only two characters.   It is the perfect replacement statement for SHLOAD, 
then RECALL and STORE, and finally SAVE.  While the Applesoft interpreter is scanning BASNAME, these 
four statements will never be found and tokenized and, therefore, they are disabled in the modified 
Applesoft.  If an Applesoft program is found to contain any of the token numbers for these disabled 
statements, the GR statement will be processed using the software routine that is assigned to that token 
number.  In the modified Applesoft, the address for IORTS or 0xFF58 is used to replace the Applesoft 
processing and label addresses for SHLOAD at 0xD034, RECALL at 0xD04E, STORE at 0xD050, and SAVE at 
0xD06E.  When the Applesoft interpreter encounters the token number for these Applesoft statements, 
Applesoft will simply process an RTS instruction and return to the Applesoft program to fetch the next 
Applesoft statement or issue a Syntax Error in <nn> if an expression is included with the GR statement. 
 
BASNAME also includes the names of the two new Applesoft statements that I added in DCI format at 0xD256 
and 0xD258, respectively.  BASNAME now ends at 0xD25A with a terminating NULL byte.  In the unmodified 
Applesoft, BASNAME ends at 0xD260.  With these five extra bytes and changing “REDIM’D ARRAY” to 
“Redefined Array”, all contractions can be removed in the list of error messages that begins at 0xD25B 
with MESG01 and ends with MESG20 and still leave three extra bytes remaining.  I have also changed the 
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error messages to include some lower case characters that assist in making the error messages far more 
readable in my opinion since the Apple //e can display lower case characters.  I have never liked the ? 
prompt character that Applesoft uses when Applesoft is requesting input data or when Applesoft is printing 
an error message.  This is my opportunity to change the prompt character to > in OUTPROMT at 0xDB56.  I 
also modified MESG21 at 0xDCDF and MESG22 at 0xDCEF to print the > character rather than the ? character 
for those two error messages.  These are the only three locations that need to be changed in order to utilize 
a less-offensive Applesoft prompt character.  To further assist in making error messages more readable, I 
have modified locations PRLINUM at 0xD431 and PRTMSG19 at 0xED0A to print additional carriage returns. 
 
 
 

The Applesoft Interpreter 
 
The Applesoft interpreter is a collection of Applesoft statements, their routines, and other functions that 
manage an Applesoft program.  The interpreter is used to construct an Applesoft program in memory, 
initialize that program, and execute Applesoft statements, ROM Monitor routines, and external assembly 
language routines.  The various Applesoft statements that assist the interpreter to manage Applesoft 
processing and Applesoft program flow are part of the Applesoft interpreter.  Applesoft is only generally 
divided into its collection of statements that assist the Applesoft interpreter, statements that manage string 
and numeric variables, statements that perform floating-point arithmetic operations, statements that perform 
transcendental arithmetic operations, Applesoft initialization and miscellaneous functions, and statements 
that manage the various LORES and HIRES graphic routines.  The following is a collection of Applesoft 
statements and their routines that assist the processing and the capabilities of the Applesoft interpreter. 
 
The Applesoft interpreter begins with the GTFORPNT routine three bytes earlier at 0xD352 than in the 
unmodified Applesoft.  This routine is utilized by the FOR and NEXT Applesoft statements.  Each FOR/NEXT 
construction is called a frame and GTFORPNT scans through the STACK for the frame whose address for its 
current iteration number matches the address that is currently in the FORPNT variable.  If the addresses do 
not match, GTFORPNT resets its pointer to check the previous frame which is twenty bytes higher on the 
STACK.  If the MSB in FORPNT is zero, then the address for the current iteration number is simply copied 
to FORPNT.  This logic takes care of the two cases when NEXT specifies a variable name or not, respectively.  
In the unmodified Applesoft, when NEXT does not specify a variable name, the logic passes from the first 
half of GTFORPNT into the second half of GTFORPNT simply to set the processor Z status to TRUE.  Of course, 
the code is more condensed when using this logic, but the processing time is needlessly lengthened for 
every single iteration of every single FOR/NEXT frame.  Those three extra bytes up front to GTFORPNT are 
used to stop the logic of the first half of GTFORPNT needlessly passing into the logic of the second half of 
GTFORPNT, and it forces the processor to set the Z status to TRUE and immediately return to the caller. 
 
The next routine is the BLTU routine or Block Transfer Utility and it begins at 0xD393 which is the same 
address for BLTU in the unmodified Applesoft.  BLTU is designed to be a negative copy routine that copies 
data from the end of a program to some higher location in memory.  This method of copying data is 
necessary when a line of Applesoft is inserted somewhere in the middle of a program.  The end of the 
program needs to be copied higher in memory and backwards, that is, from a higher address to a lower 
address such that the copy process does not overwrite the program.  As in all negative copy routines, even 
the routine I designed for the DOS 4.5 CHAIN command, the routine can appear unwieldy and cumbersome. 
 
A FOR/NEXT frame consists of twenty bytes as previously mentioned, and Applesoft must always verify that 
the STACK has enough room to add another frame.  This verification check is performed by CKSTKSIZ at 



 
 

16 

0xD3D6.  A value, 0x0A for FOR, 0x03 for GOSUB, or 0x01 for an expression evaluation is doubled by 
CKSTKSIZ and added to 0x36, and that sum is compared to the current stack pointer.  The ASL instruction 
that is used to double the entry value to CKSTKSIZ also serves the need to ensure that the C-flag is clear 
before the addition is performed.  It seems that 0x36 is a rather generous value for STACK headroom and 
some may consider reducing this value in order to allow a deeper nesting of FOR/NEXT loops or nested 
GOSUBs.  Another verification check routine follows CKSTKSIZ at 0xD3E3 that ensures that the end of the 
Applesoft array variable descriptors given by STREND do not overflow into the beginning of the Character 
String Pool given by FRETOP.  If the CKSTRSIZ routine detects this situation, it protects and copies FRETOP 
and the page-zero locations 0x94:9C to the STACK, calls GARBAG, and then restores FRETOP and the 0x94:9C 
page-zero locations.  If GARBAG is unsuccessful in separating STREND and FRETOP sufficiently, the Out of 
Memory error is posted as it is for CKSTKSIZ when the STACK has insufficient memory. 
 
All error messages in Applesoft are printed by the PRTERR routine at 0xD412.  Applesoft is aware of only 
two modes of operation:  Direct mode and Running mode.  Obviously, if an Applesoft program is processing 
Applesoft statements, then Running mode is in operation and this mode can easily be detected by looking 
at the MSB of the variable CURLIN+1, or the current line number that is being processed.  Otherwise, 
Applesoft ensures that CURLIN+1 is always initialized to 0xFF when Applesoft is not processing Applesoft 
statements and Direct mode is in operation.  Another flag that is maintained by Applesoft is ERRFLG.  DOS 
4.5.08H knows about this flag as the ASONERR flag.  When an Applesoft program uses the Applesoft ONERR 
statement, Applesoft sets the MSB in ERRFLG and performs other housekeeping chores.  If the MSB in 
ERRFLG is set, then PRTERR transfers the error management to HANDLERR at 0xF2E9.  Otherwise, PRTERR 
happily prints the appointed error message.  If CURLIN+1 is not equal to 0xFF, then PRTERR uses PRTMSG19 
at 0xED0A to print the line number in which the error occurred because Applesoft is in Running mode.  
PRTERR concludes by printing an additional carriage return.  I have modified the PRTERR routine along with 
developing a new routine called PRTMSG19 which resides just before LINEPRT at 0xED18.  The purpose of 
these modifications is to clearly show the Applesoft error message by using carriage returns before and 
after the error message.  PRTERR falls directly into the Applesoft RESTART routine. 
 
DOS 4.5.08H initializes its WARMADR pointer to the address for ASROMWRM which is also the RESTART routine 
in Applesoft at 0xD43C.   This is the routine where the prompt character ] is printed to the screen and the 
page-zero pointers that are shown in Figure 1 are initialized.  Applesoft programs are also developed using 
this routine along with the resources of BLTU.  Immediately following RESTART is the ASENTER routine at 
0xD4F2 which is the entry location for the real and true Applesoft Interpreter.  DOS 4.5.08H initializes its 
RESETADR pointer to the address for ASROMRST which is also the address for ASENTER.  ASENTER clears all 
variables and recalculates all of the page-zero pointer addresses that are shown in Figure 1. 
 
The INLIN routine at 0xD52C removes the PROMPT character, reads the Applesoft command line, stores the 
input characters into INPUT, and clears the MSB of all entered data.  INLIN also terminates data input after 
0xEF or 239 characters have been entered.  I was able to easily accelerate this routine and reduce it by two 
bytes.  I also removed the next routine, the INCHR routine which is completely unnecessary.  INCHR was 
only used by the ISCNTLC routine at 0xD858.  Eight free bytes are now available at 0xD551.  The PARSINPT 
routine at 0xD559 parses and tokenizes the data in INPUT for RESTART.  This is a very lengthy and complex 
routine, and PARSINPT shows much of the brilliance of the Applesoft developers.  PARSINPT initializes a 
pointer with the base address of BASNAME and I was surprised that TOKNCNTR was initialized with 0x00 at 
0xD59A and not with 0x80 which is the first Applesoft token number.  Several ambiguities in the Applesoft 
lexicon are worked out at 0xD5B8 using tedious character comparisons when the token number is initially 
thought to be 0xC5 for the Applesoft AT statement.  Parsing continues until End of Line, a NULL byte, or 
End of Statement, that is, a : byte, is found. 
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A line of Applesoft begins with a line number followed by an Applesoft statement which may, for example, 
be followed by one or more Applesoft statements, variables, expressions, equations, and ASCII text that is 
between quotation marks.  Every line of Applesoft is precisely constructed using an exact format and 
syntax.  That syntax is used to build every line of Applesoft using two bytes for the fully qualified address 
in low/high byte order for the next line of Applesoft, two bytes for the line number in low/high byte order, 
up to 239 bytes for the Applesoft, and a terminating NULL byte.  This format is crucial to the FNDLIN routine 
at 0xD61A when it searches an Applesoft program for a particular line number.  The routines RESTART, 
LIST, ASROMSET, and DEL use LINNUM when they call FNDLIN in order to search an Applesoft program for 
that specific line number.  FNDLIN utilizes this syntax for every line of Applesoft it processes and it can 
easily skip through an Applesoft program while searching for a specific line number.  Because the syntax 
of a line of Applesoft does not include the two-byte address for the previous line of Applesoft, Applesoft 
can only search forward and never backward through an Applesoft program. 
 
The routine for the first Applesoft statement to be processed by the Applesoft interpreter is for NEW at 
0xD649.  Many of the BASIC statements like NEW begin with checking the state of the Z-flag.  If the Z-
flag is clear, it indicates that some stray character is included with the NEW statement, then NEW simply 
does nothing, yet the Applesoft interpret will issue a Syntax error for that stray character, whatever it is.  
NEW as well as the Applesoft COLDSTRT initialization routine at 0xF127 both utilize the SCRTCH routine at 
0xD64B in order to initialize the page-zero pointers that are shown in Figure 1.  Whether NEW is issued on 
the Apple Command Line or if NEW appears in an Applesoft program, NEW simply falls into SCRTCH.  
SCRTCH falls immediately into the SETPTRS routine or ASROMCLR at 0xD665 in order to finish page-zero 
pointer initialization.  DOS 4.5.08H calls ASROMCLR after DOS has moved all of the Applesoft variable and 
array descriptor addresses to their new memory location on behalf of DOS CHAIN, and DOS calls ASROMCLR 
before DOS enters ASROMNEW processing at 0xD7D2 on behalf of DOS RUN.  SETPTRS bypasses the 
Applesoft CLEAR statement entry and falls into the CLEARC routine at 0xD66C, and CLEARC falls into the 
STKINIT routine.  The Applesoft CLEAR statement entry at 0xD66A, like the NEW statement entry, begins its 
processing by checking the state of the Z-flag, and if the Z-flag is clear, then CLEAR does nothing and it 
lets the Applesoft interpreter handle whatever stray characters it finds.  Otherwise, CLEAR simply falls into 
CLEARC in order to initialize FRETOP, ARYTAB, and STREND. 
 
I have already noted that Applesoft is heavily dependent on page-zero variables, yet page-zero is hardly 
enough memory for the processing demands of Applesoft.  Thus, Applesoft is also heavily dependent on 
STACK memory and Applesoft routinely pushes floating point variables, addresses, pointers, and data onto 
the STACK and pulls those variables and addresses from the STACK for every iteration of a FOR/NEXT frame 
or for a defined function as two examples.  In order to keep Applesoft from losing complete control of the 
STACK with possible overruns or overflows, STKINIT at 0xD683 is where Applesoft controls the start of 
the STACK and initializes its pointer to 0xF8.  This pointer initialization, of course, plays havoc with DOS 
and DOS simply cannot call ASROMCLR and expect to find its return address still available on the STACK.  
Obviously, I have written into DOS 4.5.08H an adequate solution that presets the STACK pointer to 0xFA in 
order to circumvent this unfortunate situation specifically for the DOS CHAIN command.  Once SETPTRS 
processing is complete, an Applesoft program is nearly ready to begin processing its Applesoft statements.  
The small routine that follows STKINIT is the STXTPTR routine at 0xD697 and STXTPTR is called by 
SETPTRS to simply copy the address that is in PRGTAB to TXTPTR decremented. 
 
The Applesoft LIST statement begins at 0xD6A5 and it is a lengthy and somewhat complex routine.  The 
six assembly language commands that begin LIST processing allow for the use of the – and , delimiters to 
control some of the behavior of LIST.  When Applesoft tokenizes an input line of Applesoft and before 
adding that tokenized line into an Applesoft program, the Applesoft interpreter removes all unnecessary 
space characters during that process in order to condense the total size of the Applesoft program.  However, 
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when LIST displays those program lines of Applesoft to the screen or to any output device such as a printer, 
the Applesoft LIST statement inserts a variety number of space characters according to its own processing 
decisions.  Some of those decisions can be controlled by adjusting WNDWDTH.  If a CTRL-C character is typed 
while LIST is displaying data, LIST will be interrupted and the Break message will be printed to the screen.  
I modified LIST and removed the useless NOP command at 0xD708 and I replaced the printing of the 0x0D 
character at 0xD724 with a call to PRTCR at 0xDB50, a new routine which I added to OUTCHR at 0xDB58.  
LIST is an excellent example of a routine which embeds another routine within its processing.  Whether 
the GETCHR routine is utilized by other routines or not does not condone this programming style in my 
opinion.  This practice appears rampant throughout the Applesoft interpreter and I find it very disturbing.  
There is no reason whatsoever why GETCHR cannot be placed outside of LIST processing at 0xD758. 
 
The Applesoft FOR statement processing begins at 0xD766 and this routine initializes the SUBFLG flag with 
the value of 0x80 in order to disable the use of array variables with the FOR statement.  This routine pushes 
twenty bytes onto the STACK after calling CKSTKSIZ in order to verify that the STACK still has enough room 
for another FOR/NEXT frame.  Those twenty bytes consist of two bytes for the TXTPTR of the next Applesoft 
statement (TXTPTR pushed first), two bytes for the current line number (CURLIN+1 pushed first), six bytes 
for the initial or the current value of the FOR variable as a floating-point number (FACUARD pushed first), 
one byte for the sign of the STEP value whether or not STEP is included, six bytes for the value of the STEP 
variable as a floating-point number whether or not STEP is included (FACUARD pushed first), two bytes from 
the FORPNT variable that is the address of the FOR variable that is stored within VARTAB (FORPNT+1 pushed 
first), and one byte for the token identification number of the FOR statement or 0x81 in order for GTFORPNT 
to easily identify this FOR/NEXT frame on the STACK.  The unmodified Applesoft pushes eighteen bytes onto 
the STACK because FACGUARD is not included with the floating-point value of the FOR variable and for the 
floating-point value of the STEP variable.  FOR processing utilizes the FRMSTAK3 routine at 0xDE23 in order 
to push the floating-point value of the FOR variable onto the STACK and to automatically enter STEP 
processing by means of an indirect jump.  STEP processing utilizes the FRMSTAK2 routine at 0xDE15 in 
order to push the sign of the STEP value as well as the floating-point value of the STEP variable onto the 
STACK.  The Applesoft STEP statement processing immediately follows the FOR statement processing at 
0xD7AF.  Both FOR processing and STEP processing along with the processing of FRMSTAK3 and FRMSTAK2 
are absolutely beautiful implementations of two Applesoft statements and their ancillary routines.  I am 
astounded in how clever all of these routines are designed.  STEP processing falls into the NEWSTT routine. 
 
Both the DOS RUN and the DOS CHAIN commands in DOS 4.5.08H enter the Applesoft ASROMNEW or 
NEWSTT routine at 0xD7D2.   This routine is also used to process a FOR/NEXT frame, an input line of 
Applesoft in Direct mode after the interpreter has parsed and tokenize the Applesoft statements in that 
Applesoft line at 0xD569, LIST at 0xD726, TRACE at 0xD823, GOSUB at 0xD93B, NEXT at 0xDD49, 
HANDLERR at 0xF315, and RESUME at 0xF32B.  NEWSTT falls into the DOTRACE routine at 0xD805 which 
prints a # followed by the line number of the Applesoft statement as that statement is processed when the 
MSB of the TRACEFLG flag is set.  DOTRACE returns to the top of the NEWSTT routine in order to process the 
next Applesoft statement.  Thus, the Applesoft interpreter loops using these two routines while checking 
for a CTRL-C in NEWSTT and processing each Applesoft statement using the DOSTAMT routine in DOTRACE. 
 
The Applesoft DOSTAMT routine at 0xD828 follows DOTRACE.  DOSTAMT only processes the sixty-four BASIC 
statements using the token number of the BASIC statement as an index to BASADDR for the address of the 
routine that processes that BASIC statement.  The routine address is always found decremented and 
DOSTAMT pushes that address onto the STACK and jumps to the CHRGET routine.  As soon as the CHRGET 
routine issues its RTS instruction, the routine for the designated statement will be entered immediately.  The 
CHRGET routine looks ahead one character and it clears the C-flag if that character is a number, otherwise 
CHRGET sets the C-flag.  What is more interesting is that CHRGOT sets the Z-flag if that character is a 
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colon :, that is, an End of Statement marker.  The Applesoft RESTORE statement at 0xD849 follows 
DOSTAMT.  RESTORE statement processing simply sets DATPTR to the beginning of the Applesoft program, 
that is, whatever address that is found in PRGTAB is used to initialize DATPTR.  The ISCNTLC routine at 
0xD858 follows the RESTORE routine, and I modified this routine in order to remove its dependence on the 
INCHR routine which I removed as completely unnecessary.  If the ISCNTLC routine captures a control-
C input, the routine preloads the X-register with ERROR.2 or 0xFF in case ERRFLG is found to be TRUE 
in the ASROMERR routine.  The ASROMERR routine at 0xD865 follows ISCNTLC and the address of this routine 
is used by DOS 4.5.08H in order to initialize its ERRORADR vector.  When the DOS ASONERR flag or 
Applesoft ERRFLG flag is armed, that is, when its MSB is set and a DOS error occurs, DOS enters ASROMERR 
by means of ERRORADR.  I modified the ASROMERR routine since INCHR is no longer available to strip the 
MSB from whatever keyboard character is captured by ISCNTLC.  I moved and placed the jump to 
HANDLERR  at 0xD8B0 if ERRFLG (or ASONERR) is armed so that the Applesoft STOP statement can still reside 
at 0xD86E and the Applesoft END statement can follow at 0xD870.  The END statement processing uses the 
C-flag to either jump to RESTART if the flag is clear or it prints the Break error message if the flag is set.  
The Applesoft CONT statement follows the END statement processing at 0xD896, and it simply restores 
TXTPTR and CURLIN, the current line number, from TEXTPTR and OLDLIN, respectively. 
 
The Applesoft SAVE statement is found at 0xD8B0 in the unmodified Applesoft, and SAVE uses twenty-five 
bytes of memory.  I removed the SAVE statement as I previously explained and I installed the DOHANDLR 
jump instruction for HANDLERR processing, the PULL3A routine at 0xD8B3 for Applesoft POP statement 
processing, and the RDBYTE routine at 0xD8BB in this available space.  The Applesoft LOAD statement is 
still found at 0xD8C9 and I use that Applesoft statement primarily for c2t processing.  This statement uses 
the CXREAD routine to read an Applesoft program into memory at PRGTAB for LINNUM number of bytes.  If 
the RUNFLAG flag is armed, LOAD statement processing transfers to the Applesoft RUN statement processing 
in order to enter the SETPTRS routine.  Otherwise, LOAD statement processing enters the ASENTER routine, 
that is, the Applesoft interpreter.  LOAD processing now incorporates the VARTIO routine directly and it 
discards the PROGIO routine as in the unmodified Applesoft since the Applesoft SAVE statement is removed.  
This allows the addition of the RD2BIT routine at 0xD8FF that reads two transitions of the audio waveform 
for the RDBYTE routine and for the CXREAD routine.  In operation, the RDBYTE routine requires eight calls to 
the RD2BIT routine in order to read a full 8-bit byte of audio data.  The Applesoft RUN statement follows 
RD2BIT at 0xD912 and RUN statement processing runs the Applesoft program that is currently in memory 
either at the top of the program or at a particular line number using the GOSUB2 entry point at 0xD935. 
 
The Applesoft GOSUB statement is processed at 0xD921 and it pushes seven bytes onto the STACK.  These 
seven bytes include two bytes for the NEWSTT return address, two bytes for TXTPTR, two bytes for CURLIN, 
and one byte for the GOSUB token identification number 0xB0.  GOSUB uses the GOTO statement processing 
to setup the TXTPTR from LINNUM and then GOSUB enters the NEWSTT routine in order to process this 
statement using the values that have been pushed onto the STACK.  The Applesoft GOTO statement processing 
is conveniently placed after GOSUB processing at 0xD93E.  The second half of GOTO processing is called 
ASROMSET and this routine resides at 0xD955.  DOS 4.5.08H uses ASROMSET in order to establish the starting 
line number for the DOS RUN or for the DOS CHAIN command as long as that line number exists in the 
Applesoft program that currently resides in memory.  An Undefined Statement error is written to the 
screen if that line number cannot be found in the resident Applesoft program. 
 
The Applesoft POP statement and the Applesoft RETURN statement are both processed at 0xD96B.  A glaring 
Applesoft bug occurs in this processing when Applesoft initializes FORPNT with #NEGONE in the unmodified 
Applesoft.  Obviously, FORPNT+1 must be initialized with #NEGONE prior to the call to GTFORPNT otherwise 
POP would not be able to cancel a FOR/NEXT frame whose data has been pushed onto the STACK.  POP 
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processing falls into the processing for the Applesoft DATA statement at 0xD995 which skips to the next 
Applesoft colon : or the End of Line which is demarcated by a NULL byte in Applesoft.  The routine that 
the DATA statement uses to skip ahead to the next Applesoft colon : or End of Line is the DATSCAN routine 
at 0xD9A3, and DATSCAN directly follows DATA processing.  The Applesoft IF statement is processed next 
at 0xD9C9 and after its expression is evaluated, the IF statement processes a GOTO if that statement if found 
next or the IF statement syntactically checks for an Applesoft THEN statement before it processes the GOTO.  
Or, the IF statement simply processes the next Applesoft statement as part of the Applesoft REM statement 
processing at 0xD9DC.  The REM statement also uses DATSCAN in order to scan ahead to the next Applesoft 
colon : or End of Line.  The following Applesoft statement ON at 0xD9EC operates in many similar ways 
to the IF statement by checking for a following GOSUB statement or a following GOTO statement. 
 
The Applesoft LINGET routine at 0xDA0C utilizes some rather dangerous logic that can cause a potential 
catastrophic jump to 0xD922 whenever LINNUM contains a value that is between 437,760 and 440,319 or 
0xAB00 and 0xABFF.  LINGET converts an Applesoft program line number into a 16-bit integer.  The 
maximum Applesoft line number is 25599 and LINGET tests for any line number value that is greater than 
25600 or 0x6400  However, if the most significant byte that is in LINNUM+1 happens to be exactly 0xAB, 
the unmodified Applesoft will compare that value to the value of the GOTO token number which happens to 
be also 0xAB, find that they are equal, and begin felonious processing at 0xD9F8 on behalf of LINGET.  The 
Applesoft language programmer that coded the LINGET routine was far too lazy to extend the branch at 
0xDA1E to 0xD981 where the branch should have been directed to in the first place.  That branch is 0x9D 
bytes in size and it is not possible for that branch to take place, of course.  In the modified Applesoft, I 
moved the PULL3A routine from 0xD9C5 to 0xD8B3 and I moved the SY.ERR2 jump instruction from 
0xD981 to 0xD9C5.  Now, the branch instruction at 0xDA1E for the comparison of LINNUM+1 and /6400 is 
only 0x5B bytes away and well within the reach of the SY.ERR2 label.  The Wikipedia 100,000 entry is now 
solved and no longer an issue in the modified Applesoft. 
 
The Applesoft LET statement at 0xDA46 allows one to assign an Applesoft expression to an Applesoft 
variable whether that variable is a real variable, an integer variable, or a string variable.  If the variable is 
an integer, the variable is rounded, converted to an integer, and saved using FORPNT.  If the variable is a 
real variable, the FAC floating-point register is copied using FORPNT.  And, if the variable is a string variable, 
the LET statement processing falls into the PUTSTR string routine at 0xDA7B in order to create and install a 
string descriptor at the address that is in FACMANT+2 and FACMANT+3.  The COPYSTR routine at 0xDAB7 
discards any temporary string descriptor and it copies the string from its current location in memory into 
the Character String Pool for safe keeping. 
 
The Applesoft PRINT statement at 0xDAD5 follows the processing for COPYSTR.  The PRINT statement 
handles the Applesoft TAB and SPC statements as well as evaluating all expressions and converting 
numerical values into ASCII text strings.  I did slightly modify the PRINT statement processing by removing 
the useless CLC instruction at 0xDAE4, I changed the maximum line length from 24 to 32 at 0xDAFF, and I 
branched to a newly added error handler for a Syntax error.  The LINEOUT routine at 0xDB38 calls the 
FPOUT routine in order to convert a floating-point number into a printable numerical string.  The STROUT 
routine at 0xDB3B uses the STRLIT routine to build a temporary string descriptor for the string that is pointed 
to by (A,Y) and it terminates the temporary string by looking for a quotation mark or a NULL byte.  That 
temporary string is output to the screen by the following routine STRPRT at 0xDB3E.  STRPRT contains three 
useless lines of assembly instructions and the routine is coded illogically.  This routine requires 26 bytes in 
the unmodified Applesoft and I only require 18 bytes for its complete, correct, and now beautiful 
implementation.  In the unmodified Applesoft, a space character, the Applesoft prompt character, and any 
other characters that need to be output to the screen is handled by the routines OUTSPC at 0xDB57, OUTPROMT 
at 0xDB5A, and OUTCHR at 0xDB5C, respectively.  Throughout the interpreter, I found that the carriage return 
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was output via OUTCHR at least twice.  Since I still had a few available bytes after modifying STRPRT, I 
added the PRTCR routine at 0xDB50 that outputs a carriage return and I modified those instances where I 
could substitute PRTCR in place of the previous instructions.  Now, the OUTSPC routine resides at 0xDB53, 
the OUTPROMT routine resides at 0xDB56, and the OUTCHR routine resides at 0xDB58.  The OUTCHR routine 
ORs the value in FLASHBYT to all ASCII characters that are greater than 0xA0 in order to flash characters if 
FLASHBYT contains the value of 0x40, otherwise FLASHBYT contains 0x00 for normal characters.  More 
importantly, the OUTCHR routine implements a call to WAIT at 0xFCA8 using the value that is found in 
SPEEDBYT.  In the unmodified Applesoft, the OUTCHR routine always calls WAIT.  If the value in SPEEDBYT 
is equal to 0x01, the smallest value possible in the unmodified Applesoft, each displayed character is 
delayed by 29 clock cycles which is around 28 microseconds.  The equation for calculating the delay that 
is based on the SPEEDBYT value in the A-register by WAIT is as follows: 
 

Delay = 2.5 * A2 + 13.5 * A + 13 cycles 
 
The clock in the Apple ][ series of computers is set to provide an average rate of 1,020,484 cycles/second.  
The calculations that arrive at this value are found in my book DOS 4.5 Volume and File Disk Management 
System Second Edition.  In the modified Applesoft, I changed the logic in OUTCHR to bypass the call to WAIT 
if the value in SPEEDBYT is equal to 0x00, otherwise OUTCHR calls WAIT with the value that is loaded into 
the A-register from SPEEDBYT.  SPEEDBYT is equal to the value that is evaluated from the Applesoft 
SPEED= statement and exclusively-ORed with 0xFF.  Therefore, if SPEED= contains the value of 255, the 
default speed, SPEEDBYT is set to 0x00.  If SPEED= contains the value of 254, SPEEDBYT is set to 0x01. 
 
The INPUTERR routine at 0xDB6F must determine whether an illegal character comes from an INPUT source, 
a READ source, or a GET source when an illegal character is found somewhere within a numerical field.  The 
READERR routine at 0xDB79 handles READ errors, the ERRLINN routine at 0xDB7D handles GET errors, and 
the RESPERR routine at 0xDB87 handles INPUT errors.  I modified the INPUTERR routine and created another 
handler for Syntax errors at 0xDB81.  Doing so simplifies PRINT error processing and INPUTERR error 
processing while saving a couple of bytes.  RESPERR issues the Reenter request message to handle an 
INPUT error.  The Applesoft GET statement at 0xDBA0 follows the various error processing routines.  The 
GET statement is one of the few statements that can only be used in Running mode.  The INPTLIST routine 
that the GET statement utilizes in order to obtain its input data requires (X/Y) to point to an input buffer 
which is INPUT+1 and the A-register must be set to the GET command code which is 0x40 for INPUTFLG. 
I modified the GET routine and changed a JSR/RTS construction to a JMP construction which saves 
processing time and one byte.  The Applesoft INPUT statement at 0xDBB2 follows the GET statement 
processing.  The INPUT statement is another statement that can only be used in Running mode.  If the INPUT 
statement is supplied with a string that prefaces the desired input data, that string is printed by STRPRT, and 
because I modified STRPRT so nicely, a branch rather than a jump instruction can be used after calling this 
routine.  Otherwise, the INPUT statement prints the prompt character and requests the desired input data.  
In either case, INLIN obtains the input data and it sets (X/Y) to INPUT-1.  The INPUT statement branches 
to set the A-register to the INPUT command code which is 0x00 and it falls into INPTLIST.  Finally, the 
Applesoft READ statement at 0xDBE2 sets (X/Y) to DATPTR, the A-register to the READ command code 
which is 0x98, and it falls into INPTLIST.  Sandwiched between INPUT and READ is the HEXTIN routine at 
0xDBDC.  The HEXTIN routine prints the prompt character and jumps directly to INLIN on behalf of 
INPTLIST.  These are certainly well-imagined routines. 
 
The INPTLIST routine at 0xDBEB is the first of six intertwined routines that obtain the requested data on 
behalf of the GET, the INPUT, or the READ Applesoft statements.  The other five routines that bring data into 
the Apple computer are the INPTITEM routine at 0xDBF1, the INSTART routine at 0xDC2B, the INPTFLG 
routine at 0xDC99, the FINDATA routine at 0xDCA0, and the INPTDONE routine at 0xDCC7.  MESG21 at 
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0xDCDF prints the >Extra Ignored message and MESG22 at 0xDCEF prints the >Reenter message.  
INPTLIST simply saves the current value in the A-register to INPUTFLG and it saves the registers (X/Y) 
to SRCPTR.  INPTITEM gets the address of the input variable, sets TXTPTR to point to the selected input 
buffer, and calls RDKEY at 0xFD0C in the ROM Monitor to get a character for GET, or it branches to FINDATA 
for READ, or it falls into INSTART for INPUT.  The call to RDKEY makes a jump to RDKEY2 at 0xFD13 in the 
ROM Monitor so it would be faster to simply call RDKEY2 only if this version of the Applesoft interpreter 
is used in conjunction with the Apple //e ROM Monitor.  Leaving this call for RDKEY processing is the safer 
option.  INSTART gets the next input character to build either a floating-point number or a character string 
variable.  Initially, a NULL character or a quote character is used for the string terminator, but if the quote 
character is not an input character, then the NULL, colon, or comma character can be used for the string 
terminator.  The call to STRLIT2 at 0xDC57 builds a character string starting at (A/Y) and the call to GETINT 
at 0xDC6A uses TXTPTR to get a floating-point number.  INPTFLG uses INPUTFLG to simply direct READ 
and INPUT data operations.  FINDATA is used by READ as indicated above.  This routine needs to check for 
a colon :, an End of Line NULL, or an End of Program NULL.  The final routine in this set of data input 
routines is INPTDONE and this routine restores the (A/Y) registers from SRCPTR and the X-register from 
INPUTFLG.  If a READ is requested, then (A/Y) is saved to DATPTR.  Otherwise, an INPUT is requested and 
if the character at SRCPTR is not a NULL character, then MESG21 is printed.  I have made several 
modifications to FINDATA and to INPTDONE that slightly accelerate the processing of these two routines. 
 
The Applesoft NEXT statement at 0xDCF9 directly follows the various data input routines.  Processing for 
the NEXT statement is involved, complex, and a little difficult to follow.  Each 20-byte FOR/NEXT frame is 
stored in the STACK and NEXT statement processing must retrieve variables and addresses that are contained 
in that frame in order to control the flow of FOR/NEXT loop processing either back to the FOR statement or 
to the statement that follows the NEXT statement.  I found this routine to be a great opportunity to condense 
it, to accelerate it, and to utilize the guard bytes that are now included in all floating-point variables that are 
pushed onto the STACK on behalf of FOR/NEXT processing.  The NEXT statement may optionally include the 
incrementing variable of its companion FOR statement.  Slightly faster overall processing can be achieved 
if that variable is not included with the NEXT statement.  The only difference in timing amounts to a call to 
PTRGET.  Regardless, the address of that incrementing variable is either verified or located by GTFORPNT.  
NEXT locates the STEP value, the END value, and the sign of the STEP value in the frame for this FOR/NEXT 
loop.  The STEP value is added to the incrementing FOR variable, its value saved to VARTAB, and its value 
compared to the END value.  That result, ironically, is used in a calculation to determine if the FOR/NEXT 
loop has expired.  If the FOR/NEXT loop has remaining iterations, both CURLIN and TXTPTR are extracted 
from the frame and NEXT jumps to NEWSTT processing in order to run the next FOR/NEXT iteration.  
Otherwise, NEXT enters some very interesting processing which allows NEXT to include all incrementing 
and comma-separated variables if there exists at least one nested FOR/NEXT loop.  A bit of recursive 
processing is used to handle that particular Applesoft programming construction.  I extracted a total of five 
bytes of unnecessary logic and I accelerated the beginning of this routine.  I have also made the size of the 
FOR/NEXT frame dynamic, so if FACGUARD is not pushed onto the STACK on behalf of FOR, the FOR/NEXT 
frame size would revert back to eighteen bytes since FACSIZE would be equal to only five bytes. 
 
The FRMNUM routine at 0xDD64, the CHKNUM routine at 0xDD67, the CHKSTR routine at 0xDD69, and the 
CHKVAL routine at 0xDD6A all follow the processing for the NEXT statement.  If NEXT implements its 
recursive processing, NEXT literally falls into FRMNUM in order to begin processing the next comma 
delineated NEXT statement in exactly the same way the FOR statement calls FRMNUM at 0xD799.  This is truly 
insightful programming.  These four evaluation test routines confirm that the variable under evaluation is a 
string variable when VALTYP is equal to 0xFF and the C-flag is set or the variable is a numeric variable 
when VALTYP is equal to 0x00 and the C-flag is clear.  To further decode numeric variables, a numeric 
variable is a floating-point variable when VALTYP+1 is equal to 0x00 or a numeric variable is an integer 
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variable when VALTYP+1 is equal to 0x80.  If the variable under evaluation and VALTYP in concert with the 
C-flag do not match these specifications, the Type Mismatch error message is issued and the Applesoft 
interpreter terminates any further program processing.  I wonder (rhetorically) why a single value-type 
variable could not be utilized having the values of 0x00, 0x40, or 0x80 that could easily be tested using 
the BIT instruction regardless of the C-flag in order to more quickly evaluate variable type for a string 
variable, for a floating-point variable, or for an integer variable?  The FRMEVAL routine at 0xDD7B follows 
these variable evaluation tests.  FRMEVAL utilizes TXTPTR in order to evaluate the expression that resides at 
that location in memory.  Whatever value FRMEVAL extracts from that expression is transferred into the FAC 
floating-point register.  Also, FRMEVAL can be used to evaluate both string and numeric expressions.  This 
routine fully utilizes the precedence code found in the Operator TAG statements in order to properly 
evaluate the expression using relational operators and/or mathematical operators.  When string variables 
are evaluated for addition, FRMEVAL simply concatenates the strings.  Some operations are pushed onto the 
STACK and evaluated as if they were functions by utilizing the recursive FRMRECUR routine.  As in the 
processing for the FOR and the STEP statements, the SAVOP routine at 0xDDD7 calls FRMRECUR at 0xDDFD 
to utilize the FRMSTAK routine in order to push the FAC floating-point register onto the STACK. 
 
The FRMSTAK routine at 0xDE10 follows FRMRECUR.  FRMSTAK uses a protocol that is different from the 
DOSTAMT routine which pushes a decremented address onto the STACK in order to engage the processing of 
the routine for the selected statement by means of CHRGET.  Rather, FRMSTAK pulls the address of the calling 
routine from the STACK, increments that address, and saves that address in INDEX.  Once FRMSTAK has 
pushed the FAC floating-point register onto the STACK, it simply jumps indirectly to the address in INDEX.  
There is a 1 in 256 chance, perhaps, of finding an address on the STACK that is off a 256-byte page boundary 
by one byte, or 0xnnFF, where nn is some page value.  In the unmodified Applesoft, FRMSTAK assumes that 
this occurrence will never happen and, therefore, it only increments the LSB of the address without even 
checking the MSB of the address.  Only two routines utilize FRMSTAK, so it is reasonable to smartly position 
those two routines away from a page boundary in order to prevent such a miscalculation.  The necessary 
logic to modify this routine and not be concerned with page boundary issues amounts to adding three bytes 
of additional code.  Those three bytes as well as an additional three bytes for a modification to the NOTMATH 
routine are obtained by offloading some of the logic that pushes the FAC floating-point register onto the 
STACK to another memory location in the modified Applesoft.  When FRMEVAL finds no mathematical 
operations to perform while evaluating an expression, it branches to the NOTMATH routine at 0xDE32 in 
order to setup its exit by loading FACEXP into the A-register.  However, if NOTMATH finds that there is an 
operation that has been pushed onto the STACK, that floating-point value is pulled from the STACK into the 
ARG floating-point register in preparation for mathematical processing.  Those additional three bytes are 
now used to pull FACGUARD from the STACK into ARGGUARD. 
 
The FRMELMNT routine at 0xDE60 follows NOTMATH.  FRMELMNT processes an array element and it either 
extracts a numerical value at TXTPTR or it uses TXTPTR that points to a string descriptor and it falls into 
STRTXT at 0xDE81 in order to initialize (A/Y) to point to the first character in that string for the STRLIT 
routine.  The following NOTFUNC routine at 0xDE90 checks for an Applesoft NOT statement, one of those 
catch-all statements in the C0:C7 token number range, initializes the Y-register with the EQU tag, and lets 
the EQULFUNC routine handle further processing.  The Applesoft = statement is processed by the Applesoft 
EQUAL statement at 0xDE98 in order to initialize the Y-register with 0x01 if FACEXP is 0, otherwise, it 
initializes the Y-register with 0 and it creates an integer from either value.  Processing on behalf of the 
Applesoft FN statement and on behalf of the Applesoft SGN statement is offset by three bytes in the modified 
Applesoft.  The FNFUNC routine at 0xDEA7 evaluates the FN token and jumps to CALLFNC whereas the 
SGNFUNC routine at 0xDEAE evaluates the SGN token and falls into PARENCHK when that evaluation fails 
with any token number less than 0xD2.  In the unmodified Applesoft, SGNFUNC branches to PARENCHK and 
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jumps to UNARY for further consideration.  The modified Applesoft simply branches to UNARY and saves 
three bytes of Applesoft space, but more importantly, the modified Applesoft has accelerated FUNCTION 
statement processing. 
 
Applesoft expressions are typically enclosed in parentheses.  The PARENCHK routine at 0xDEB2 calls the 
CHKOPNP routine to check for an open parenthesis, then calls the FRMEVAL routine and falls into the CHKCLSP 
routine.  The CHKCLSP routine at 0xDEB8 checks for a closed parenthesis using the SYNTXCHK routine.  The 
CHKOPNP routine at 0xDEBB checks for an open parenthesis.  Both parenthesis checks use the SYNTXCHK 
routine.  The CHKCOM routine at 0xDEBE checks for a comma and falls into the SYNTXCHK routine.  The 
SYNTXCHK routine at 0xDEC0 compares the ASCII character that resides in the A-register to whatever 
the TXTPTR is currently pointing to.  That ASCII character is expected to be where TXTPTR is pointing, so 
if that character is not found at that memory location, the Applesoft interpreter will issue a Syntax error. 
 
The MINUFUNC routine at 0xDECE follows the parenthesis and comma evaluation routines and this routine 
handles the minus function, it initializes the Y-register with the NEG tag, and the routine falls into the 
EQULFUNC routine at 0xDED0 that also processes the NOTFUNC routine discussed above.  The EQULFUNC 
routine simply pops the STACK pointer twice and it jumps to the SAVOP routine in order to push that 
processing onto the STACK.  When the FRMELMNT routine finds an ASCII letter A-Z, it branches to the 
GETIVAL routine at 0xDED5.  GETIVAL locates the address for this array element.  If this array element is a 
floating-point number, that number is loaded into the FAC floating-point register using INDEX.  If this array 
element is an integer, that integer is converted into a floating-point number.  Otherwise, this routine returns 
with the address of the string array element in VARPTR.  The Applesoft SCRN( statement is processed next 
by means of the SCREEN routine at 0xDEF9 which is one of those odd FUNCTION statements that is 
syntactically not a FUNCTION1 statement because it contains two numerical expressions that are separated 
by a comma rather than a single numerical expression.  And, the SCRN( statement is syntactically not a 
FUNCTION2 statement because its two expressions contain numerical variables rather than string variables.  
Thus, PLOTFNS is used to extract those numerical variables for the screen location that the ROM Monitor 
SCRN function at 0xF871 requires in order to provide its 4-bit color value. 
 
I have had the pleasure to evaluate many complex Applesoft routines, but the UNARY routine at 0xDF09 in 
the modified Applesoft is one of the most interesting routines which I found necessary to modify in order 
to add two statements to the Applesoft language repertoire.  The UNARY routine manages all of the 
FUNCTION1 and FUNCTION2 statements from SGN to MID$, and UNARY even uses its capabilities to process 
the SCRN( statement and utilize its call to CHRGET on behalf of SCREEN processing.  Adding a new Applesoft 
statement requires Applesoft space for its address and Applesoft space for its statement name in DCI format.  
Since all token values from 0x80 to 0xEA are already assigned, the next available token number is 0xEB.  
The address for any new Applesoft statement must follow the address of MID$ if that statement is to be 
processed by UNARY.  And, new instructions are required to sort out the new token numbers at the beginning 
of the UNARY routine.  In the unmodified Applesoft, the address that is associated with the SCRN( statement 
at 0xD08A uses the address for PRTERR and not for SCREEN at 0xDEF9.  In other words, the UNARY routine 
will never point to the address for processing the SCRN( statement since UNARY already captures its token 
number.  The modified Applesoft requires 0xD08A to contain the address for SCREEN in order for UNARY to 
process the SCRN( statement.  Just allocating the additional space for a new statement address and for a new 
statement name at the beginning of the Applesoft interpreter is a difficult, first hurdle.  Modifying the UNARY 
routine in order to incorporate a new Applesoft statement is the final hurdle.  In UNARY processing, all of 
the variables that are pushed onto the STACK as well as their order is critical so that FN processing is fully 
supported.  For this single reason, there are no shortcuts that can be implemented when attempting to modify 
UNARY.  First, all FUNCTION1 statements, that is, statements that are not string functions like LEFT$, 
RIGHT$, or MID$, must branch to 0xDF3A for PARENCHK processing except for SCRN( which branches to 
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0xDF3D just after PARENCHK processing.  Second, if the new Applesoft token number is equal to 0xEB, it 
must also branch to 0xDF3D since the Applesoft PI statement does not require its expression to be evaluated 
by FRMEVAL.  Third, if the new Applesoft token number is greater that 0xEB, it must branch to PARENCHK 
processing since the Applesoft LN statement does require expression processing.  And fourth, space must 
be made available in order to accommodate these specific token number branches such that the instructions 
that form the jump address for the target routine remain at 0xDF3F.  I found that I could relocate the final 
three processing bytes for string FUNCTION2 statements elsewhere in Applesoft space for the three bytes 
that are needed in order to implement the branches for the Applesoft SCRN(, PI, and LN statements.  Once 
the relocated instructions complete their processing, a jump is made directly to 0xDF3F.  I have only added 
three cycles to string FUNCTION2 statement processing for those relocated instructions.  Rather than pushing 
a decremented address onto the STACK or saving the target address in INDEX and indirectly jumping to 
INDEX, the UNARY routine saves the target address to JMPADRS+1 and JMPADRS+2 and uses JMPADRS as a 
subroutine call.  Of course, if the byte at JMPADRS is ever clobbered and no longer equal to the absolute 
address JMP instruction 0x4C, all hopes of Applesoft interpreter recovery would be dismal if not impossible.  
Should JMPADRS always be refreshed with 0x4C?  I wonder.  I think it should.  But how? 
 
 
 

String and Numeric Variables 
 
Applesoft is only generally divided into its collection of statements and routines that assist the management 
of string variables, floating-point variables, and integer variables.  These variables are managed by the use 
of descriptors whose format depends on the type of variable that it describes.  The following is a collection 
of Applesoft statements and routines that manage string and numeric variables. 
 
The simple binary routines for the Applesoft OR statement at 0xDF4F, the Applesoft AND statement at 
0xDF55, the Applesoft FALSE routine at 0xDF5D, and the Applesoft TRUE routine at 0xDF60 all follow 
UNARY processing.  These four routines only need to operate on FACEXP and ARGEXP in order to generate 
an integer response.  The Applesoft LT statement processing at 0xDF65 follows TRUE.  LT processing 
performs relational operations by comparing the FAC floating-point register with the ARG floating-point 
register and floating the result.  Staying on point, the Applesoft STRCMP routine at 0xDF7D compares two 
string variables.  Both the FAC floating-point register and the ARG floating-point register are utilized in order 
to make comparisons of the content of the two string variables.  Like in LT processing, STRCMP processing 
uses the NUMCMP routine at 0xDFB0 in order to float the results of its string comparison and NUMCMP floats 
the results of LT comparisons.  The Applesoft PDL statement at 0xDFCD converts its expression into an 
integer in order to call the ROM Monitor routine PREAD at 0xFB1E.  Unfortunately, PDL processing will 
accept an expression that produces any input numerical value from 0 to 255.  Though PREAD does not test 
or mask the X-register for valid input values, PREAD is intended to provide only four paddle read values 
for paddles 0:3.  Applesoft promulgates this nonsense that users will only use Applesoft statements 
correctly and within their defined ranges whereas I believe users must be informed when they utilize an 
Applesoft statement incorrectly or beyond the range of useability for that statement.  PDL processing does 
not perform its task well enough in the unmodified Applesoft and corrective action is required.  I supplied 
additional instructions to ensure that the argument that is supplied with the Applesoft PDL statement is 
within the range of 0:3 or the Illegal Quantity error message is given in response rather than an 
erroneous numerical result from PREAD.  The Applesoft DIM statement at 0xDFD9 follows PDL processing.  
DIM processing simply allocates the memory for the descriptor of an array variable and its elements.  
Applesoft automatically provides memory for up to eleven elements for any array variable from 0:10.  If 
an array variable contains more than eleven elements, that array variable must be dimensioned using the 
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DIM statement or the Bad Subscript error will be issued when a dimension greater than the number 10 is 
ever utilized.  Even though an array descriptor allows for up to 255 dimensions, Applesoft limits the number 
of dimensions for an array to eighty-eight, that is, DIM A(0,0,…0) can only specify up to eighty-eight 
zeros.  DIM processing uses successive calls to PTRGET to allocate the memory for an array followed by a 
call to CHKCOM in order to process the next following array element variable. 
 
The Applesoft PTRGET routine at 0xDFE3 is nearly a page in length at 0xEF bytes and it wraps around the 
Applesoft cold start and warm start entry points at 0xE000 and 0xE003, respectively.  PTRGET is an 
important external routine as well, so its legacy entry address must definitely be conserved.  PTRGET is 
somewhat controlled by the DIMFLG flag and by the SUBFLG flag as mentioned earlier in the processing for 
the Applesoft FOR statement.  All calls to PTRGET initialize DIMFLG to 0 except for the call from Applesoft 
DIM statement processing which sets DIMFLG to a non-zero value.  SUBFLG is initialized to 0 by the 
STKINIT routine which is part of SETPTRS (or ASTROMCLR) and utilized by DOS 4.5.08H in order to RUN 
or to CHAIN an Applesoft program.  STKINIT is also called by PRTERR whenever an error message is 
displayed on the screen as a result of a processing error that causes the Applesoft interpreter to terminate 
further program processing.  The GETARYPT routine in the unmodified Applesoft initializes SUBFLG to 0x40 
before calling PTRGET and then GETARYPT returns SUBFLG back to 0 before reading from or writing to the 
cassette recorder.  In the modified Applesoft, the GETARYPT routine is removed and all SUBFLG logic is no 
longer required to test for 0x40.  Therefore, the six bytes of SUBFLG logic at 0xE048 is no longer necessary.  
Like the FOR statement, the Applesoft DEF statement processing initializes the SUBFLG to 0x80 in order to 
restrict its variables to only simple variables and never array variables.  GETFNC processing sets the SUBFLG 
to any of the token values from 0xC0 to 0xDB.  This tells PTRGET precisely which Applesoft statement is 
requesting the information for the specified variable.  PTRGET is a general variable scan routine for the 
variable name that is found at TXTPTR, and PTRGET searches VARTAB and ARYTAB for that variable name.  
If PTRGET is unable to locate the variable name, PTRGET creates the appropriate type variable in either 
VARTAB or in ARYTAB.  PTRGET names the descriptor, clears the descriptor, and inserts the address of the 
value into the descriptor for that variable.  PTRGET returns with the address of the variable in VARPNT as 
well as in (A/Y) for the external user.  For some reason that I am unable to fathom, the Applesoft language 
developers occasionally insert a short routine within a lengthy routine that has absolutely nothing in 
common with the lengthy routine.  The CHKASCI routine is one such routine that I moved to 0xE0DA from 
the middle of PTRGET to the end of PTRGET.  I also moved the value for integer zero from the middle of 
PTRGET to 0xE105 which is just before the floating-point value for 32768 at 0xE107.  CHKASCI is a very 
short routine that sets the C-flag if the A-register contains an ASCII character from A to Z, otherwise, 
CHKASCI clears the C-flag.  I not only shortened this routine by one byte from the version that is found in 
the unmodified Applesoft, but I also accelerated this routine as well.  The PNTARVAL routine at 0xE0E3 
points to the first array value by calculating the size of the descriptor for that array variable which depends 
on multiplying the value of its dimensions by two and adding in the size of its descriptor #AHADRLEN. 
 
The STRSETUP routine at 0xE0FF follows PNTARVAL and the short continuation of the UNARY routine so 
that the PI and the LN statements can be include in the modified Applesoft.  STRSETUP is a 3-byte patch 
that checks for a closed parenthesis before continuing the processing at 0xE6BC.  This software patch is 
used by LEFT$, RIGHT$, and MID$ statement processing.  As mentioned above, the IVALZERO zero value 
and the FP8000 32768 value follow STRSETUP.  The MAKINT routine at 0xE10C evaluates the numeric 
expression that is currently pointed to by TXTPTR.  MAKINT falls into the AYPOSINT routine at 0xE112 in 
order to test FACSIGN and verify that the evaluation result is positive, or AYPOSINT issues an Illegal 
Quantity error.  That positive result is submitted to the following routine AYINT at 0xE116 which converts 
the FAC floating-point register into an integer having a maximum value of 32767.  AYINT uses the floating-
point verification value of 32768 in order to test if the value in the FAC floating-point register is equal to or 
greater than the verification value.  Unfortunately, the Applesoft language developers failed to include the 



 
 

27 

fourth byte of the mantissa for this verification value.  The correct verification value for FP8000 is utilized 
in the modified Applesoft. 
 
The ARRAY routine at 0xE128 follows AYINT and this routine locates an array element or this routine creates 
an array element.  ARRAY is an extraordinarily lengthy routine of 0x1B6 bytes and ARRAY utilizes the STACK 
heavily.  This routine is one of the most poorly designed and implemented routines in all of Applesoft.  
Even the Y-register that serves as the dimension counter is pushed onto the STACK.  My first modification 
to ARRAY is to utilize NUMDIM at the very beginning of the routine rather than utilize the Y-register for 
the dimension counter and simply eliminate some of the STACK complexities.  VALTYP is initially pushed 
onto the STACK before processing the first array dimension and then VALTYP is pulled from the STACK in 
order to search for this array name once that processing is complete.  However, because the Applesoft 
interpreter overloads its page-zero variables to such a gross extent, ARRAY must push VARNAM onto the 
STACK before it can utilize MAKINT in order to evaluate the expression at TXTPTR.  Once the expression has 
been evaluated, ARRAY can restore VARNAM from the STACK.  I utilize the X-register and the Y-register 
for different purposes in this first part of ARRAY than how these registers are utilized in the unmodified 
Applesoft and, as a result, I have tremendously accelerated this part of ARRAY.  When ARRAY must create a 
new array, ARRAY continues its processing at 0xE1BE that first determines if there even exists enough 
memory for a new array.  That new array can be a string array, a floating-point array, or an integer array 
with a corresponding descriptor size provided.  The default array size is set by #DFLTDIM whose value is 
0x0B unless DIMFLG indicates that a dimension value is provided.  Once the address for the end of the array 
is computed at 0xE20B, STREND can be evaluated in order to verify that sufficient memory exists for all 
requested array elements.  When ARRAY must locate a specific array element, ARRAY continues its 
processing at 0xE24B by pulling subscripts from the STACK and comparing those subscripts to the desired 
element number.  The FINDELE label is used at 0xE24B for this processing.  This part of ARRAY processing 
even goes as far as having to multiply subscripts using the MULSUBS routine.  Of course, ARRAY must utilize 
VARNAM to discriminate between string, floating-point, and integer type arrays to correctly calculate the 
address for the first array element in order to determine the address of the specified element.  ARRAY returns 
with the address of the specified element in VARPNT as well as in (A/Y) for the external user.   
 
The MULSUBS routine at 0xE2AD is a 16-bit integer multiply routine that ARRAY uses in order to multiply 
two subscript values.  The subscript that is found in LOWTR is the multiplicand and the subscript that is 
found at STRING2 is the multiplier.  If the product should ever exceed 32767, the Out of Memory error is 
issued and ARRAY is unable to create this array within ARYTAB.  It is rather a shame that the Applesoft 
language developers could not have developed a 32-bit integer multiply routine and use that routine for 
ARRAY as well as for correctly processing the Applesoft RND statement.  I have no doubt that MULSUBS and 
my 32-bit integer multiply routine can be merged.  MULSUBS is followed by the processing for the Applesoft 
FRE statement at 0xE2DE.  If a temporary variable exists and it is a string variable, its descriptor is released 
before FRE calls the GARBAG routine.  Thus, the FRE statement forces the call to GARBAG.  After GARBAG 
processing, the number of bytes of Free Space between FRETOP and STREND is calculated, saved as an 
integer, floated as a floating-point value, and presented to the caller.  FRE does evaluate its expression, so 
its expression must be something legal, but FRE does not utilize the value that the Applesoft interpreter 
obtains from that expression which might be something useful.  The Applesoft POS statement at 0xE2FF 
follows the FRE statement and this statement extracts the value in CH, the current horizontal screen cursor 
position relative to the left hand margin of the TEXT window, and presents that value to the SNGFLT routine 
at 0xE301 in order to generate a single byte integer that is floated to a floating-point value between 0 and 
255.  The Applesoft interpreter evaluates the expression for POS but POS does not utilize the value that is 
obtained from its expression similar to the processing for the FRE statement, another wasted opportunity.  
As in the CH variable, the first character at the left hand margin of the TEXT window on any line has a value 
of 0.  The short Applesoft routine CHKIFDIR at 0xE305 follows SNGFLT, and CHKIFDIR issues the Illegal 
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Direct error whenever CURLIN+1 is still equal to 0xFF, that is, when the Applesoft interpreter is still 
processing in Direct Mode and not in Running Mode.  I removed a SEC instruction at the beginning of 
SNGFLT that serves absolutely no purpose whatsoever in order to accelerate interpreter processing. 
 
The Applesoft DEF statement at 0xE313 follows the Illegal Direct and the Undefined Function error 
messages at 0xE30B and 0xE30E, respectively.  DEF processing uses the GETFNC routine to parse and to 
verify that the next program token number is the Applesoft FN token number and GETFNC obtains the 
address of that function name in order to initialize FUNCNAM.  DEF now expects the Applesoft interpreter to 
be in Running Mode before it evaluates the FN expression for its required dummy variable.  PTRGET 
initializes VARPNT with the address of this simple variable.  To complete the required syntax of this 
statement, the token number for the Applesoft EQUAL statement is verified last.  The first token number 
after the EQUAL statement, that is, the Applesoft statement that FN is about to process, VARPNT content, and 
TXTPTR content are all pushed onto the STACK, processing for the Applesoft DATA statement is performed 
that swaps out the dummy variable, and DEF statement processing continues in the FNCDATA routine.  The 
GETFNC routine at 0xE341 is utilized by DEF processing as described above and by the CALLFNC routine at 
0xE354 which follows GETFNC.  Once processing returns from GETFNC, CALLFNC pushes FUNCNAM onto 
the STACK in order to protect its value in case of a nested FN statement before it calls PARENCHK in order to 
evaluate its numerical expression, and then CALLFNC can restore FUNCNAM from the STACK.  CALLFNC 
restores VARPNT from FUNCNAM and pushes all five bytes of its floating-point value onto the STACK as well 
as loading the FAC floating-point register with that same value.  CALLFNC now pushes TXTPTR and VARPNT 
onto the STACK, evaluates the FN statement expression with the actual replacement value for the dummy 
variable, restores the address of the dummy variable from VARPNT into FUNCNAM, and restores TXTPTR 
before falling into FNCDATA for further processing, just like in DEF statement processing.  The FNCDATA 
routine at 0xE3AF, on behalf of DEF, restores from the STACK the TXTPTR, VARPNT, and the Applesoft 
statement that is being processed by FN.  Otherwise, on behalf of CALLFNC, FNCDATA restores from the 
STACK the original value for the dummy variable that was specified in the expression of the FN statement.  
Why the original value that is found in the dummy variable is pushed onto the STACK at 0xE378 in a register 
loop and pulled from the STACK byte by byte in FNCDATA is very perplexing.  Is it because the FNCDATA 
routine processes data twice as often as the routine at 0xE378?  I have no doubt that the Applesoft language 
developers utilized a number of caulk boards in order to design the DEF FN statement pairing routines and 
the FN statement processing routines in conjunction with the existing BASIC interpreter routines and their 
specific capabilities.  FN statement processing is a substantial endeavor, but it does heavily compromise 
STACK resources and it limits the nesting for the utilization of many FOR/NEXT loops or many nested 
GOSUBs.  I wonder if many Applesoft users have even utilized a DEF FN statement or even many nested 
FOR/NEXT loops or many nested GOSUBs in their Applesoft programs?  Having to support the DEF FN 
statement is the driver for having to push all of those parameters and variables onto the STACK in UNARY. 
 
I would very much like to understand why the Applesoft language developers differentiated between a NULL 
terminated ASCII string when that string is found at STACK-1, at STACK, or at INPUT.  The Applesoft STR 
statement at 0xE3C5 follows FNCDATA processing.  The expression for the STR statement must be a numeric 
string whose numeric ASCII values are written to and begin at STACK-1 or 0x00FF when STR processing 
branches to the STRLIT routine with STACK-1 in (A/Y).  Whereas FRMEVAL, for example, evaluates an 
expression for the Applesoft PRINT statement and finds its string values at the beginning of the STACK or 
0x0100 when it calls the STRLIT routine with STACK in (A/Y).  As previously noted, the STRTXT routine 
calls the STRLIT routine when its string values are found in the INPUT buffer at 0x0200, all in the 
unmodified Applesoft.  This string differentiation plays out in the STRLIT processing where NULL 
terminated strings that begin on Page 0x00 or that begin on Page 0x02, that is, at STACK-1 or in the INPUT 
buffer, respectively, are fully processed and moved into memory.  NULL terminated strings that are found 
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on Page 1 are not fully processed and they are not moved into memory.  I can certainly understand why 
STR strings and Page 2 strings are processed differently than Page 1 strings.  I simply cannot grasp why so 
much effort is expended in order for the FPOUT routine to begin NULL terminated strings at two different 
memory locations at or about the STACK.  The STRINI routine at 0xE3D0 follows the STR routine and this 
routine takes the string address at FACMANT+2 in order to create a descriptor for that string by the following 
routine STRSPA at 0xE3D8.  STRSPA is only utilized by the CHR$ and LEFT$/RIGHT$/MID$ processing, and 
STRSPA uses the GETSSPC routine to find space for that string at FRETOP.  All of my fuss over the STRLIT 
routine is focused at 0xE3E2 and STRLIT follows STRSPA.  STRLIT builds a descriptor for the string 
variable at (A/Y) that is either NULL terminated or surrounded by quotation marks.  STRLIT may utilize 
STRINI in order to move that string variable into memory as noted above, but STRLIT always creates a 
temporary descriptor in page-zero.  As will be presented in FPOUT, when FPOUT processes the FAC floating-
point register in the modified Applesoft, FPOUT always writes the numeric ASCII values for that floating-
point value to the beginning of the STACK in all situations.  Therefore, STRLIT must utilize a new strategy 
in order to differentiate the various string variable sources and what processing to implement.  Only half of 
the bytes that implement the old strategy in the unmodified Applesoft are utilized for the new strategy in 
the modified Applesoft, and STRLIT is, of course, accelerated. 
 
The PUTNEW routine at 0xE426 follows STRLIT and this routine verifies that there are no more than three 
3-byte temporary string descriptors in page-zero, otherwise the Formula too Complex error is issued.  
Perhaps only overly complex expressions use more than three temporary string descriptors?  I have yet to 
witness this error message.  PUTNEW proceeds to copy the temporary string descriptor that is currently in 
DSCTMP to TEMPST indexed by 0, 3, or 6.  No two Applesoft string descriptors will ever point to the same 
memory location.  Even if the ASCII content of two string variables are identical, that string data content 
will be found at two different memory locations and their string descriptors will contain one or the other 
memory address.  The GETSSPC routine at 0xE454 returns with the address of a memory location within 
the Character String Pool at FRETOP for the number of bytes specified in the A-register.  GETSSPC is 
only utilized by STRSPA and it returns with the allocated space in (X/Y).  If GETSSPC pushes FRETOP down 
to or past STREND, GETSSPC will issue the Out of Memory error, set the MSB of the GARFLG flag, and it 
will attempt to recover some Character String Pool memory by calling the GARBAG routine and then repeat 
the exercise one more time.  The GARBAG routine at 0xE484 directly follows GETSSPC. 
 
The GARBAG routine utilizes an algorithm similar in concept to a basic bubble sort algorithm in order to 
remove all of the unreferenced character string data from the Character String Pool. Thus, GARBAG attempts 
to compact the Character String Pool contents for GETSSPC or before the DOS 4.5.08H CHAIN command 
can relocate the SAVs in memory.  The processing time for GARBAG to extract all of the little bits and pieces 
of unreferenced character strings and string characters is proportional to the square of the number of 
character strings that are currently in use.  So, if there are one hundred active character strings it will take 
four times longer to process those character strings than if there are only fifty active character strings.  Many 
Garbage Collection algorithms have been previously published that accomplish the same results as GARBAG 
in far less time, but there can be a number of caveats when using some of these other algorithms.  For 
instance, normal Applesoft programs save all character string data in lower ASCII where the MSB is clear 
for each character byte in the string.  Furthermore, normal Applesoft programs never allow more than one 
character string descriptor to point to the same character string data in memory.  Multiple character string 
variable and array element descriptors may each point to identical character string data sets, but these 
identical sets of character string data must reside at different memory locations.  Some Garbage Collection 
algorithms depend upon these constraints.  If either constraint is not found to be true, a catastrophe will 
result during the course of subsequent Applesoft processing!  Of course, if the character string data of an 
Applesoft program is kept normal and these constraints are observed, there will be no subsequent processing 
problems.  If assembly language routines, possible appendages to the Applesoft program, or other code 
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segments perform exotic manipulations to the character string descriptors or to the content of the Character 
String Pool, these constraints might very well be violated.  As described above, the Applesoft FRE statement 
forces a call to GARBAG and the number of bytes of Free Space between FRETOP and STREND is calculated, 
saved as an integer, floated as a floating-point value, and presented to the caller. 
 
Cornelis Bongers of Erasmus University in Rotterdam, Netherlands, published a brilliant Garbage Collector 
specification for Applesoft character strings in Micro, August, 1982, many, many years ago.  According to 
an article in Apple Assembly Line, March, 1984, the speed of Mr. Bongers’ algorithm was incredible when 
compared to the GARBAG algorithm that was designed by the Applesoft language developers.  And, the 
processing time for this algorithm was directly proportional to the number of active character strings rather 
than to the number of active character strings squared.  The only problem with this algorithm was that the 
magazine that published the algorithm also owned Mr. Bongers’ specification.  Worse yet, the algorithm 
was tied to a program called Ampersoft, marketed by Microsparc, then publishers of Nibble magazine.  It 
was reported that a license to use Bongers’ algorithm was prohibitively expensive at that time. 
 
From the Applesoft Variables section, Table 1 shows the definition of a simple character string variable 
descriptor as it is found in the Simple Variables memory area.  From that same section, Table 2 shows the 
definition of a character string array variable descriptor as it is found in the Array Variables memory area.  
Bongers’ specification introduced the idea of marking active character strings that are located in the 
Character String Pool.  During the first pass through the Simple Variable and the Array Variable descriptors 
storage areas in memory and through the Character String Pool, Bongers set the third byte in the character 
string data to its upper ASCII value and he swapped in the address of its character string descriptor in place 
of the first two bytes of the character string data.  He saved those first two bytes of the character string data 
safely in the address field of its descriptor or of its character string element.  The address that was previously 
in the address field of the descriptor would most likely be changed anyway after all of the character strings 
are moved up in memory to their final destination.  During the second pass through the Simple Variable 
and the Array Variable descriptors storage areas in memory and through the Character String Pool, he 
moved all of the active character strings up in memory as far as possible, he unmarked the third character 
string data byte, he retrieved the first two characters from storage in its descriptor or in its character string 
element, and he updated the address field to the new memory location where that string now resides in the 
Character String Pool. 
 
Bongers’ algorithm is most efficient when the active character strings are a least three bytes in length, so 
one- and two-character strings require slightly different handling in his specification.  During the first pass 
through the Simple Variable and the Array Variable descriptors storage areas in memory and through the 
Character String Pool, he saved the first byte of character string data pointed to by these short descriptors 
into the character string length byte of its descriptor.  If the character string length is two, he stored the 
second data byte into the low address byte of its descriptor.  For single byte character strings, he flagged 
the low address byte with the value of 0xFF.  He flagged the high address byte in all short descriptors with 
the value of 0xFF since no character string will ever have a memory address that is equal to or greater than 
0xFF00.  If he found short character strings during the first pass, he set a short descriptor’s flag and if that 
flag was found to be set after the second pass was completed, his specification initiated a third pass where 
he returned the short character strings to the Character String Pool with their descriptors updated to their 
new memory location.  Short character strings do slow down Bongers’ algorithm a little.  However, the 
processing time is still directly proportional to the number of active character strings, and not to the number 
of active character strings squared.  Table 6 illustrate Bongers’ specification during the first pass through 
the Simple Variable and Table 7 through the Array Variable descriptors storage areas in memory and 
through the Character String Pool. 
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String	Descriptor	Before	Pass	1	
Þ	

String	Descriptor	After	Pass	1	
+AS	 -AS	 1	 LSB	 MSB	 0	 0 +AS	 -AS	 41	 FF	 FF	 0	 0 

 

Character	String	Pool	Before	Pass	1	
Þ	

Character	String	Pool	After	Pass	1	
41	 	 	 	 	 	 	 41	 	 	 	 	 	 	

 
String	Descriptor	Before	Pass	1	

Þ	
String	Descriptor	After	Pass	1	

+AS	 -AS	 2	 LSB	 MSB	 0	 0 +AS	 -AS	 41	 42	 FF	 0	 0 
 

Character	String	Pool	Before	Pass	1	
Þ	

Character	String	Pool	After	Pass	1	
41	 42	 	 	 	 	 	 41	 42	 	 	 	 	 	

 
String	Descriptor	at	ADL/ADH	Before	Pass	1	

Þ	
String	Descriptor	at	ADL/ADH	After	Pass	1	

+AS	 -AS	 LEN	 LSB	 MSB	 0	 0 +AS	 -AS	 LEN	 41	 42	 0	 0 
 

Character	String	Pool	Before	Pass	1	
Þ	

Character	String	Pool	After	Pass	1	
41	 42	 43	 44	 45	 46	 47 ADL	 ADH	 C3	 44	 45	 46	 47 

Table 6.  Bongers Simple Variable Descriptor Processing in Pass 1 
 
 
 

String	Element	Before	Pass	1	
Þ	

String	Element	After	Pass	1	
1	 LSB	 MSB 41	 FF	 FF 

 

Character	String	Pool	Before	Pass	1	
Þ	

Character	String	Pool	After	Pass	1	
41	   41 	  

 
String	Element	Before	Pass	1	

Þ	
String	Element	After	Pass	1	

2	 LSB	 MSB 41	 42	 FF 
 

Character	String	Pool	Before	Pass	1	
Þ	

Character	String	Pool	After	Pass	1	
41	 42  41	 42	  

 
String	Element	at	ADL/ADH	Before	Pass	1	

Þ	
String	Element	at	ADL/ADH	After	Pass	1	

LEN	 LSB	 MSB LEN	 41	 42 
 

Character	String	Pool	Before	Pass	1	
Þ	

Character	String	Pool	After	Pass	1	
41	 42	 43	 44	 45	 46	 47 ADL	 ADH	 C3	 44	 45	 46	 47 

Table 7.  Bongers Array Variable Element Processing in Pass 1 
 
 
 
Pass two in Bongers’ specification uses only the information that is in the Character String Pool data in 
order to move all currently active character string variables up in Character String Pool memory as far as 
possible.  This is accomplished by initializing a string pool pointer and a character string pointer beginning 
at HIMEM and then searching down in memory to FRETOP for any upper ASCII character bytes.  Once an 
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upper ASCII character byte is found, its character string descriptor is located and retrieved at the memory 
location that is two bytes prior to the upper ASCII character byte.  That character string descriptor contains 
the length of the character string and the first two ASCII characters that were copied from the data of that 
character string.  Those two characters may be safely copied back into its character string data and the upper 
ASCII character byte that marked this string data can be changed back to its lower ASCII value.  The 
character string length can now be subtracted from the current character string pointer address, the new 
character string address can be copied to the second and the third bytes in its character string descriptor, 
and the character string data can be copied to its new Character String Pool location.  However, the character 
string data must be copied from its last character to its first character rather than from its first character to 
its last character in order to prevent possibly overwriting part of the character string data.  Once the string 
pool pointer reaches the original address in FRETOP, the current character string pointer address becomes 
the new address for FRETOP if the short descriptors flag is not set.  If the short descriptors flag is set, then 
a third pass must be made through the Simple Variable and the Array Variable descriptors storage areas in 
memory and through the Character String Pool according to Bongers’ specification.  A memory pointer is 
initialized to VARTAB and a search is made for the 0xFF byte in either the fifth byte of a Simple Variable 
descriptor or in the third byte of an Array Variable element.  If the prior byte also contains an 0xFF byte, 
then the descriptor is for a single byte character string, otherwise the descriptor is for a two byte character 
string.  The current character string pointer is adjusted for one or for two characters, the character string 
data is copied from its descriptor to the Character String Pool, and the character string pointer address is 
copied to its character string descriptor.  Once the memory pointer reaches STREND, the current character 
string pointer address becomes the new address for FRETOP. 
 
I must again emphasize that Bongers’ specification depends upon two very important caveats:  normal 
Applesoft programs save all character string data to memory in lower ASCII, that is, with the MSB of each 
character byte cleared, and normal Applesoft programs never allow more than one character string 
descriptor to point to the same character string data in memory.  Bongers’ algorithm will fail if a user should 
program something like A$ = CHR$( 193 ) rather than A$ = CHR$( 65 ).  Bongers’ algorithm will fail if an 
assembly language routine should modify two character string descriptors to point to the same character 
string data in the Character String Pool.  Therefore, reasonable care must be given when creating Applesoft 
programs and/or assembly language routines that take the above caveats seriously in order to exact the 
stupendous benefits in using a garbage collector routine that is based on Bongers’ specification.  Armed 
with only these limited and published details of Bongers’ specification that I just presented, my analysis of 
those details, and my complete understanding of Tables 1, 2, and 3 as well as my generation of Tables 6 
and 7, my attempt to recreate Bongers’ algorithm resulted in an assembly language routine that was 0x200 
bytes in size.  This necessitated creating a suitable Applesoft test program that would verify the accuracy 
of my implementation of Bongers’ specification and to confirm to my satisfaction that no character string 
was altered in length, modified in content, or destroyed during VARTAB, ARYTAB, or Character String Pool 
processing.  My ultimate goal would be to replace GARBAG in the Applesoft interpreter with my version of 
Bongers’ specification.  In the unmodified Applesoft, GARBAG occupies 0x113 bytes of space and there is 
0x70 bytes of additional space available in the CX ROM area at 0xC600:C66F just prior to where I placed 
the SWEET16 Metaprocessor code at 0xC670.  If the CX ROM space is used, then CX ROM memory 
management must also be incorporated into the new garbage routine.  When all available memory is totaled, 
my garbage routine must fit within 0x183 bytes if it is to replace GARBAG. 
 
Certain decisions must be made that, hopefully, do not cause the introduction of more processor cycles than 
absolutely necessary in order to compact an assembly language routine.  Example strategies would be to 
limit subroutine calls in the inner-most loops and to limit the pushing and popping of variables onto the 
STACK.  Sometimes, simply reorganizing the order of a number of processing loops can greatly simplify the 
routine and eliminate having to re-initialize registers.  Keeping the MSB address of a variable in a register 
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when addresses are often compared or manipulated can help simplify and even accelerate the routine as 
well.  I have no doubt that Mr. Bongers could have condensed my initial attempt in programming his 
specification down from 0x200 bytes to 0x183 bytes where six of those bytes are required for CX ROM 
memory management.  My initial attempt to condense my garbage routine could not meet the goal of 0x183 
bytes unless I removed the short descriptors flag that signaled whether a third pass was necessary, so I 
always made a third pass.  Many times, it is helpful to just take a break from any difficult programming 
task, walk away, and work on something that is demanding in other ways.  Thus, when I returned to my 
garbage routine, I took another fresh look and I found several additional strategies that could condense my 
routine even further, and even allow the use of the short descriptors flag.  Hurray!  I was able to place one 
segment of the routine into the 0x70 bytes that are located in the CX ROM area and the other segment into 
the 0x113 bytes where GARBAG normally resides.  All that was left for me to do was the testing, the timing, 
and the verification of the routine once I fully installed the routine into the Applesoft interpreter. 
 
The CAT2STR routine at 0xE597 directly follows GARBAG and CAT2STR concatenates two string variables.  
The string variable address of the first string must be pushed onto the STACK so that the address and length 
of the second string variable can be evaluated.  If the sum of these two strings exceeds 256 bytes, CAT2STR 
issues the String too Long error message and processing for the Applesoft program terminates.  I moved 
this error message to the end of the CAT2STR routine in order to accelerate its processing.  The MOVINS 
routine at 0xE5D4 follows CAT2STR, and this routine extracts the length and the address of a string variable 
from its string descriptor and transfers those values into the three registers.  MOVINS falls into the MOVSTR 
routine at 0xE5E2.  MOVSTR uses the A-register for the length and (X/Y) for the address of the string 
variable in order to move the string data from its current memory location to the destination address in 
FRESPC.  The variable FRESPC is incremented with the string length.  The routine following MOVSTR is the 
FRESTR routine at 0xE5FD and FRESTR is used only by the GETSTRLN routine in order to call CHKSTR and 
fall into the FREFAC routine at 0xE600.  FREFAC is used by STRPRT and STRCMP and by the FRE statement 
routine to simply obtain the address of a descriptor.  It seems that GETSTRLN could have called CHKSTR and 
then call FREFAC and save yet another programming symbol from the Symbol Table.  FREFAC falls into the 
FRETMP routine at 0xE604 in order to release a single page-zero temporary string and reduce the value of 
temporary strings in LASTPT.  FRETMP is called with the address of a descriptor in (A/Y) in order to extract 
the length of the string variable into the A-register and the address of the string variable into (X/Y) and 
initialize INDEX with that same address.  The FRETMS routine at 0xE635 follows FRETMP.  FRETMS is called 
having values in (A/Y) that are compared to LASTPT.  If they are equal, LASTPT is reduced by 3. 
 
The Applesoft CHR$ statement at 0xE646 follows FRETMS.  CHR$ processing converts its input expression 
into a single byte integer and uses STRSPA to obtain space at FRETOP for a single-byte string variable where 
the input variable can be stored.  The Applesoft LEFT$ statement at 0xE65A follows CHR$ processing.  The 
LEFT$ statement processing provides several common routines that both RIGHT$ and MID$ processing can 
utilize.  All three string manipulation routines use the STRSETUP routine in order to process the input 
expression and evaluate that expression for its first parameter, a string variable.  LEFT$ processing uses 
STRSPA to reserve space at FRETOP for the non-zero number of characters that it extracts from the input 
string variable.  The Applesoft RIGHT$ statement at 0xE686 follows LEFT$ processing and it utilizes much 
of the LEFT$ routine after subtracting the non-zero number of characters to extract from the input string 
variable.  How clever is that?  The Applesoft MID$ statement at 0xE691 follows RIGHT$ processing and far 
more processing effort is utilized in MID$ in order to evaluate all components of its input expression.  Either 
one or two numerical parameters follow the input string variable in the MID$ expression, and the value of 
those numerical parameters can range from 1 to 255 according to official Applesoft documentation.  Since 
STRSETUP handles the first parameter as in LEFT$ and RIGHT$ processing, that routine correctly detects an 
error if the first numerical parameter is zero.  Unfortunately, the official Applesoft documentation errors 
concerning the legal range of the second numerical parameter if it is given in the MID$ expression.  The 
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unmodified Applesoft apparently allows the second numerical parameter to equal zero and not issue an 
error message.  Of course, setting the second numerical parameter to zero in the MID$ expression does not 
provide any data output whether that is intended or not.  However, setting this second numerical parameter 
to zero should cause the Applesoft interpreter to issue the Illegal Quantity error message and terminate 
any further processing just like STRSETUP does when it finds the first numerical parameter equal to zero.  
In order to manage this glaring deficiency, the output of the call to the GETBYT routine at 0xE69F must not 
return a value of zero in the X-register.  Three bytes of memory are required in order to test the X-
register and branch if its value is equal to zero.  Those three bytes of memory can be derived in several 
ways by offloading some of the instructions in MID$ processing or in the following routine so as not to 
perturb the entry address for the next Applesoft statement.  The cleanest modification that would insert the 
least processing delay would be to move the entry of STRSETUP elsewhere and jump back to finish the 
STRSETUP routine.  Using this strategy, STRSETUP is actually entered at 0xE0FF as already noted, and at 
0xE102 the routine returns to its normal processing location at 0xE6BC and this patch costs this routine 
only three additional processor cycles.  The STRSETUP routine extracts its return address from the STACK 
and saves that address, it pops and discards the return address to the UNARY routine, it pops the integer byte 
value of the second numerical parameter in the expression, and it pops the address of the descriptor for the 
string variable in the expression.  Lastly, STRSETUP pushes the return address it previously saved and tests 
the integer byte value of the first numerical parameter for zero.  If that integer byte value is zero, 
STRSETUP issues the Illegal Quantity error message and it terminates any further processing. 
 
The Applesoft LEN statement at 0xE6D6 follows STRSETUP.  LEN processing utilizes the GETSTRLN routine 
to evaluate the LEN statement expression in order to extract the length of the string variable that is found in 
its descriptor, it sets VALTYP to numeric, and it returns with the length of the string variable in the Y-
register.  That string variable length is floated and returned to the user as an integer value.  The GETSTRLN 
routine is at 0xE6DC and it follows LEN processing.  As I indicated above and in my opinion, the GETSTRLN 
routine wastes a symbol in using FRESTR to call CHKSTR which falls immediately into the FREFAC routine.  
Perhaps the Applesoft language developers had additional plans to utilize the FRESTR routine for other 
purposes?  The Applesoft ASC statement at 0xE6E5 also utilizes the GETSTRLN routine in order to evaluate 
its expression for the ASCII value of the first character in a string variable.  If GETSTRLN should ever return 
zero, the ASC statement routine will issue the Illegal Quantity error message and terminate further 
Applesoft processing.  Official Applesoft documentation warns that the ASC statement will generate a 
Syntax error message if the statement should attempt to process a control-@ as in ASC( CHR$(0) ).  I 
found that no such error is generated and that the value of zero is returned as expected.  Inaccurate 
documentation does complicate these simple routines unnecessarily.  The routine GETBYTC at 0xE6F5 
follows the ASC statement routine and GETBYTC reads the next character at TXTPTR and falls into the GETBYT 
routine at 0xE6F8.  GETBYT evaluates the expression at TXTPTR, returns with its byte value in the X-
register, and falls into the CONVINT routine at 0xE6FB.  CONVINT converts the value that is found in the 
X-register to a positive single byte integer in the FAC floating-point register. 
 
The Applesoft VAL statement at 0xE707 follows CONVINT processing and VAL processing is the last user of 
GETSTRLN.  If GETSTRLN returns with a value of zero, a floating-point value of 0 is returned in the FAC 
floating-point register to the caller.  Otherwise, VAL processing collects all of the numeric values in the 
expression while ignoring all space characters up until the first non-numeric character.  The resulting value 
is returned as either a floating-point number or as an integer number.  GETSTRLN returns with the number 
of characters that comprise the numeric content in the VAL expression including the space characters.  
TXTPTR, which points to the first character after the ) in the VAL expression, is copied to STRING2 for safe 
keeping and INDEX, which points to the beginning of the VAL expression, is copied to TXTPTR in order to 
make use of the powerful CHRGET routine.  The value from GETSTRLN is added to INDEX and saved to DEST.  
DEST now points to the end of the VAL expression, copies its last character to the STACK for safe keeping, 
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and replaces that character with a NULL character.  This effectively allows the GETINT routine to evaluate 
this entire expression for its numeric value including any +, -, ., and E characters as well as + and - 
characters that might be associated with the E character if scientific notation is encountered within this 
expression.  After GETINT processing, DEST is used again in order to restore that last character and TXTPTR 
is restored from STRING2 by the STRCOPY routine at 0xE73D.  The GETINT routine performs its task as 
intended unless the VAL expression happens to contain a string variable that resides at the very top of the 
Character String Pool.  DEST may indeed contain the address of 0xC000 and GETINT may not even 
encounter the NULL character until somewhere in the 0xC0 page, though unlikely.  This situation will always 
be potentially problematic for GETINT whenever HIMEM is initialized to 0xC000.  Fortunately, DOS 4.5.08H 
utilizes main memory from 0xBE00 to 0xBFFF, and HIMEM is always initialized to 0xBE00. 
 
The GETASNUM routine at 0xE746 follows STRCOPY.  GETASNUM and the following routine COMBYTE at 
0xE74C, together, evaluate two comma-separated expressions where the first expression provides a 16-bit 
integer value in LINNUM and the second expression provides an 8-bit integer value in the X-register.  The 
GETADDR routine at 0xE752 follows COMBYTE and GETADDR converts the 16-bit integer value in LINNUM to 
a floating-point number in the FAC floating-point register.  The Applesoft PEEK statement at 0xE764 utilizes 
GETADDR in order to return the value that resides at the memory address that is obtained when GETADDR 
evaluates the PEEK statement expression.  Following PEEK processing is the Applesoft POKE statement at 
0xE77B.  POKE processing utilizes GETASNUM in order to save the value that resides in the X-register to 
the memory address that is found in LINNUM.  The Applesoft WAIT statement at 0xE784 is the final user of 
GETASNUM in order to obtain a 16-bit memory address in LINNUM and an 8-bit value that is saved to FORPNT.  
If a third variable is used with the WAIT statement, that value is obtained by means of COMBYTE, and that 
value is saved to FORPNT+1, otherwise FORPNT+1 is initialized with zero.  WAIT statement processing 
occurs in a very simple loop where the value at (LINNUM) is exclusively-ORed with FORPNT+1 and ANDed 
with FORPNT.  If that processing produces a zero result, the processing loop is repeated.  As soon as the 
processing produces a non-zero result, the loop processing is terminated and no values are returned to the 
user.  The Applesoft WAIT statement can provide a means to pause Applesoft processing until very specific 
or very precise conditions are met, either by internal values or by external values such as the keyboard, the 
annunciators, or the RND variable that is incremented by XKEYIN or by CXKEYIN in the CXROM. 
 
 
 

Floating-Point Arithmetic Operations 
 
Applesoft is only generally divided into its collection of statements and routines that perform floating-point 
arithmetic operations.  These arithmetic operations include subtraction, addition, multiplication, division, 
and the square root function.  The following is a collection of Applesoft statements and routines that perform 
floating-point arithmetic operations. 
 
The Applesoft SUB statement at 0xE7A7 begins the Applesoft floating-point arithmetic operations.  SUB 
processing follows WAIT processing and the converted floating-point value for the PI variable at 0xE7A1 
and its guard byte FPIGUARD at 0xE7A6.  I was able to modify the Applesoft floating-point arithmetic 
operations, the floating-point register to memory routines, and the floating-point register to register routines 
in order to utilize guard bytes in far more arithmetic operations once I had sufficient space for these 
improvements.  SUB processing begins like the other three arithmetic operations to load the ARG floating-
point register with the floating-point value that is pointed to by INDEX.  The FAC floating-point register 
already comes pre-loaded with the first numeric variable after the Applesoft interpreter has evaluated the 
expression for the SUB statement.  FACSIGN is inverted and exclusively-ORed with ARGSIGN and saved to 
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XORSIGN, the two numeric values are added, and their sum is returned in the FAC floating-point register.  
The Applesoft ADD statement at 0xE7BE follows SUB processing.  As in SUB processing, ADD processing 
begins by calling LOADARG to load the ARG floating-point register with the floating-point value that is 
pointed to by INDEX.  The FAC floating-point register already contains the value of the first variable in the 
expression for the ADD statement.  The processing that is common to both SUB processing and ADD 
processing begins by messing around with their respective guard bytes.  Guard bytes are left unmodified in 
the modified Applesoft.  Period!  In order for two floating-point values to be added when these values each 
utilize an exponent and a mantissa, the exponents must be equal in order for their mantissas to be added 
properly, and any carry bit that results from this addition is added to the common exponent.  FACEXP and 
ARGEXP are subtracted and the mantissa of whichever exponent is smaller is adjusted to the right that many 
bits.  If the number of bits is greater than seven, the mantissa is shifted to the right by one byte for every 8 
bits.  The mantissa is further shifted to the right for any remaining bits.  Depending on the value of XORSIGN, 
the two mantissas are subtracted or added, and the resulting floating-point value is normalized.  Floating-
point normalization is always performed so that the floating-point value can utilize all of its mantissa and 
guard bits to their greater efficiency.  The mantissa checks its MSB and the normalization routine shifts the 
mantissa and the guard bits left until that MSB is set in order to create the implicit high-order one bit to 
yield a full 40-bit significand.  Every time the mantissa is shifted left, the exponent is decremented.  The 
MSB is swapped for the sign bit from XORSIGN to complete the normalization routine.  Besides the 
normalization routine, SUB processing and ADD processing utilize other routines to zero the FAC exponent, 
to compliment the FAC mantissa, to increment the FAC mantissa, and to shift the FAC mantissa up a variable 
number of bits.  FACGUARD plays a prominent and decisive role in all of these normalization routines. 
 
I have no idea why the Applesoft language developers decided to follow the SUB and the ADD routines with 
the Applesoft LN statement at 0xE941.  But, more importantly, why those developers called this routine 
their LOG statement routine rather than their LN statement routine since this routine calculates the natural 
logarithm rather than the base-10 logarithm of a positive floating-point number.  One can easily compute 
the base-10 logarithm LOG from the natural logarithm LN using the relationship log(𝑥) = ln(𝑥) ∗ log	(𝑒) 
where 𝑒 is about equal to 2.718281828, thus log	(𝑒) is about equal to 0.434294482.  A conversion may 
be computed from ln	(𝑥) for any base-n logarithm simply by knowing the value of log	(𝑒) for that base-n.  
Electrical engineers and tactical radar engineers, for example, all utilize this logarithmic nomenclature to 
ensure that their equations are using the correct logarithmic values in their calculations.  Many floating-
point variables are explicitly included as well as the polynomials that are utilized to calculate the natural 
logarithm before Applesoft tackles LN statement processing.  These variables begin at 0xE913 and they end 
at 0xE940, and they follow the continuation of the Applesoft PDL processing at 0xE908.  There exists a 
number of methods to calculate the natural logarithm of any positive floating-point number. 
 
The LN statement routine factors out and saves n, the powers of 2 from the exponent of the input argument 
minus EXPBIAS or 0x80, and it reduces the value of the argument so that it is near the value of 1 in order 
to utilize the identity ln(𝑥 ∗ 2') = ln(𝑥) + 𝑛 ∗ ln	(2).  When an argument is reduced in this manner and 
its value is near the value of 1, the Taylor series expansion for ln	(𝑥) can be utilized because this series 
expansion produces an excellent approximation only in this finite numerical range.  The Taylor series 
expansion for the natural logarithm will converge faster when x is closer to 1. 
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After the LN routine saves and replaces the exponent of the input argument with EXPBIAS, the routine adds 
the square root of 0.5 to the argument that resides in the FAC floating-point register and that register 
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becomes the divisor that is used in order to divide the square root of 2.0.  That quotient is then subtracted 
from 1.0.  These simple add, divide, and subtract mathematical steps can be transformed as follows. 
 

1 −	
√2.0

x +	√0.5
=
x −	√0.5
x +	√0.5

=
x√2.0 − 1
x√2.0 + 1

 

 
 
 

Polynomial Index Applesoft Value Base-10 Value True Value Base-10 Value 
Entries - 1 0x00 0x03 3 0x03 3 

(2/7)(√2)*x^7 0x01 0x7F 3E56CB79 0.43425594 0x7F 4EE115F3 0.404061018 
(2/5)(√2)*x^5 0x06 0x80 139B0B64 0.57658454 0x80 10D0C292 0.565685425 
(2/3)(√2)*x^3 0x0B 0x80 76389316 0.96180075 0x80 715BEEF0 0.942809042 

2(√2)*x 0x10 0x82 38AA3B20 2.88539007 0x82 3504F336 2.828427125 

Table 8.  Applesoft Natural Log Routine Polynomials 
 
 
 
The FAC floating-point register is now in the correct format for Taylor series expansion, and the Applesoft 
language developers decided to utilize only four polynomials to calculate the natural logarithm.  However, 
those developers modified these four polynomials from their theoretical value.  All of the polynomials have 
been preprocessed, -0.5 is added to the FAC floating-point register, and n, that was saved earlier from the 
input argument, is converted into a floating-point variable in order to multiply it with the natural log of 2.0.  
Table 8 shows the four modified values that are used for the Taylor series expansion polynomials that 
process the transformed input argument to calculate its natural logarithm.  The modified values deviate, 
always higher, than the theoretical Taylor series expansion values.  However, even if the theoretical values 
shown in Table 8 are used in conjunction with the theoretical values for the fifth and sixth polynomials, the 
resulting logarithmic value is still not even close to the logarithmic value that is obtained from using the 
modified polynomials values.  Obviously, I have no idea how these modified polynomial values were 
calculated nor do I know the mathematical rationale that was utilized for these calculations. 
 
LN processing is completed when it cleverly falls into the Applesoft MULT statement at 0xE97F in order to 
multiply the FAC floating-point register with the natural logarithm of two.  As in SUB and ADD processing, 
MULT processing begins by calling LOADARG to load the ARG floating-point register with the multiplicand, a 
floating-point value that is pointed to by INDEX.  The FAC floating-point register already contains the 
multiplier, the value of the first variable in the expression for the MULT statement.  The MULMANT floating-
point register contains the mantissa product.  Both the MULT routine and the DIV routine utilize a common 
PROCEXP routine that processes the FACEXP and ARGEXP exponents.  If ARGEXP is 0, both FACEXP and 
FACSIGN are cleared to zero and the arithmetic operation is terminated.  Otherwise, ARGEXP is added to 
FACEXP.  If their sum is less than 0x80 and the carry flag is clear, then both FACEXP and FACSIGN are 
cleared to zero and the arithmetic operation is terminated as above.  On the other hand, if their sum is 
greater than 0x80 and if the carry flag is set, an Overflow error message is generated and the arithmetic 
operation is terminated.  Otherwise, when the carry flag is clear, their sum is added to EXPBIAS and that 
sum is stored at FACEXP.  If FACEXP is not equal to 0, the value that is stored at XORSIGN is copied to 
FACSIGN.  However, if FACEXP is equal to 0 in the unmodified Applesoft, then 0 is stored at FACSIGN.  This 
final logic cannot be more wrong!  This logic makes the quotient of a very small number positive without 
regard to the sign of the divisor or the sign of the dividend.  The modified Applesoft fixes this glaring error.  
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At the conclusion of MULT or DIV processing, the mantissa is always copied from the MULMANT floating-
point register to the FAC floating-point register and the exponent in the FAC floating-point register is 
finalized with that mantissa.  As in all floating-point and integer multiply routines, the product register, that 
is, MULMANT, is first cleared to zero.  In order to facilitate the MULT routine, each byte of the multiplier 
participates in the routine individually such that if its value is zero, then the product register is simply 
shifted right by one byte.  Otherwise, that byte is shifted to denote when to add the multiplicand to the 
product register.  FACGUARD is the first multiplier byte, and then it is immediately cleared to zero so that it 
can participate in multiplicand and product register addition.  Both FACGUARD and ARGGUARD did not 
participate in multiplicand and product register addition in the unmodified Applesoft. 
 
The LOADARG routine at 0xE9E3 follows MULT processing.  LOADARG uses (A/Y) to initialize INDEX and 
copy the floating-point number at that address into the ARG floating-point register.  LOADARG also manages 
ARGSIGN, and with FACSIGN, LOADARG produces a value for XORSIGN.  LOADARG initializes ARGGUARD to 
0 and exits with the Y-register equal to zero and the A-register equal to FACEXP, a value that each 
of the four arithmetic operations check for zero after calling LOADARG.  Following LOADARG is the PROCEXP 
routine at 0xEA10 which was explained above.  Following PROCEXP is the ZEROFERR routine at 0xEA2E 
that checks for a zero or overflow error, the Overflow error message at 0xEA32, and the Division by 
Zero error message at 0xEA35.  Following the error messages are two shortcut routines that multiply or 
divide the FAC floating-point register by ten, respectively.  The MULFAC10 routine at 0xEA3A utilizes 
COPYF2A in order to copy the FAC floating-point register to the ARG floating-point register without using 
any roundup facilities as done in the unmodified Applesoft.  COPYF2A also copies FACGUARD to ARGGUARD 
without modification.  MULFAC10 adds the value of 2.0 to FACEXP effectively multiplying the FAC floating-
point register by four, adds the ARG floating-point register to the FAC floating-point register, and increments 
FACEXP again, effectively multiplying the FAC floating-point register by two.  In effect, MULFAC10 
processing produces ( 4 + 1 ) * 2 = 10.  The DIVFAC10 routine at 0xEA55 follows MULFAC10.  The 
DIVFAC10 routine also uses COPYF2A, it uses LOADFAC to load the floating-point parameter value of 10.0, 
and then it uses DIV to produce the desired quotient.  DIVFAC10 is followed by the Applesoft DIV statement 
at 0xEA66.  DIV processing begins by calling LOADARG to load the ARG floating-point register with the 
dividend, a floating-point value that is pointed to by INDEX.  The FAC floating-point register already 
contains the divisor, the value of the first variable when the expression of the DIV statement is evaluated.  
The DIV routine subtracts FACEXP from zero before it calls PROCEXP like in MULT processing as I explain 
above.  Unlike in MULT processing, however, DIV increments FACEXP and tests FACEXP for zero.  I believe 
the MULT routine is beautifully written and I could not have offered a better organization for its various 
processing units.  On the other hand, the DIV routine is not beautifully written and its processing units are 
not well organized.  Besides the disorganization within the DIV routine, both FACGUARD and ARGGUARD do 
not participate in dividend and divisor addition in the unmodified Applesoft.  Along with the quotient in 
the MULMANT register, FACGUARD provides only two valid upper bits, the most bare minimum of information 
for any useful floating-point normalization once the MULMANT register is copied to the FAC floating-point 
register and normalized.  It is pointless to describe DIV processing in the unmodified Applesoft. 
 
DIV processing in the modified Applesoft initializes the X-register with 0xFB as a five iteration counter 
and pointer because DIV processing intends to produce four mantissa bytes and one guard byte.  The A-
register is initialized with 0x01 so that that register can simultaneously act as an eight bit counter as it 
gathers bits for a quotient byte value.  At the top of the DIV processing loop, the Y-register is solely 
utilized in order to make a preliminary comparison of the dividend and the divisor mantissas along with 
their guard bytes, and capture the state of the carry flag before it is shifted into the LSB of the A-register.  
If the carry flag is set, DIV processing performs the actual subtraction where the dividend becomes the 
minuend and the difference is stored as the new dividend.  Whether the dividend is replaced or not, ARGMANT 
and its guard byte are shifted one bit to the left and its MSB is shifted into the carry flag.  If that carry flag 
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is set or if ARGMANT is positive determine the two conditions that will occur if, indeed, the dividend is still 
smaller than the divisor, and another preliminary comparison of the two mantissas at the top of the 
processing loop is unnecessary.  Only when the carry flag is clear and when ARGMANT is negative does DIV 
processing make another preliminary comparison of the dividend and the divisor mantissas.  This strategy 
is brilliant and it confines all of the DIV processing to what is only necessary in order to efficiently progress 
to the next processing iteration.  In capturing the state of the carry flag that is shifted into the A-register 
from either the preliminary comparison of dividend and divisor or from the shift of ARGMANT one bit to the 
left as the A-register is also shifted one bit to the left, and as long as the MSB of the A-register, which 
shifts into the carry flag, is clear, the next processing iteration will continue for that quotient byte.  Similar 
in how the MSB of the A-register is set in MULT processing in order to provide an eight bit counter as 
the A-register is shifted right, the A-register provides an eight bit counter as the A-register is 
shifted left in DIV processing.  As soon as this eight bit counter expires, the X-register is incremented 
and that register is used as the index in order to save the quotient byte value that currently resides in the A-
register to MULMANT as the most significant or the next significant byte in the mantissa of the developing 
quotient.  The X-register is also used to determine if DIV processing should continue to calculate the 
next quotient byte value and again initialize the A-register with its counter value of 0x01 or to conclude 
DIV processing entirely and save the last quotient byte value to FACGUARD, copy MULMANT into FACMANT, 
and normalize the FAC floating-point register.  I modified DIV processing and reordered some of its 
processing units that optimize its processing flow.  Even though I added full FACGUARD and ARGGUARD 
participation in DIV processing, I am able to extract twelve processing bytes for other uses.  Rather than 
produce a FACGUARD with only two valid bits as in the unmodified Applesoft, FACGUARD now contains eight 
valid bits prior to FAC floating-point register normalization.  DIV  processing is far more meticulous and 
this additional processing time helps to reduce Applesoft mathematical irregularities in subsequent floating-
point numerical values for those Applesoft arguments where arithmetic division is necessary. 
 
DIV processing falls directly into the COPYM2F routine at 0xEAE6.  The COPYM2F routine is only used by 
MULT and by DIV processing, and this routine jumps directly to floating-point mantissa normalization in 
order to finalize the floating-point exponent.  Following the COPYM2F routine is the LOADFAC routine at 
0xEAF9, and LOADFAC uses (A/Y) to initialize INDEX and copy the floating-point number at that address 
into the FAC floating-point register.  LOADFAC initializes FACSIGN and it exits with the Y-register equal 
to zero, FACGUARD equal to zero, and the A-register equal to FACEXP.  Following the LOADFAC routine 
is the COPYFAC routine at 0xEB2B and its additional entry points for COPYF2T2 at 0xEB1E, COPYF2T1 at 
0xEB21, and COPYF2FR at 0xEB27.  The COPYFAC routine is the only register copy routine that calls the 
RNDUP routine in order to process FACGUARD and possibly roundup the FAC floating-point register before 
COPYFAC saves (X/Y) to INDEX.  Before COPYFAC copies the content of the FAC floating-point register to 
memory that is pointed to by INDEX, COPYFAC loads the X-register from FACGUARD rather than 
destroying FACGUARD and initializing FACGUARD with 0 as in the unmodified Applesoft.  Following 
COPYFAC is the COPYA2F routine at 0xEB53 which is written as a register loop routine that saves memory 
at the expense of processing time.  This routine is only used by ADD processing when LOADARG returns 
FACEXP equal to 0 and by exponentiation processing.  To better serve exponentiation, I extended the 
COPYA2F routine and included the copy of ARGGUARD to FACGUARD rather than initializing FACGUARD with 
0 as in the unmodified Applesoft.  The COPYF2A routine at 0xEB63 immediately follows COPYA2F.  The 
COPYF2A routine is also written as a register loop routine in the unmodified Applesoft and it requires very 
little space for this very popular routine that is used throughout Applesoft.  For that reason alone, I removed 
its register loop in the modified Applesoft and extended this routine into a free area of Applesoft space.  
Even though I added three cycles for a JMP instruction, I have tremendously accelerated this routine and I 
have copied FACGUARD to ARGGUARD rather than initializing FACGUARD with 0 as in the unmodified 
Applesoft.  In fact, the COPYF2A routine in the unmodified Applesoft does not even touch or update the 
value in ARGGUARD.  All of the routines that utilize COPYF2A now benefit from having a valid 40-bit 
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mantissa in the ARG floating-point register.  The infamous RNDUP routine at 0xEB70 follows COPYF2A.  The 
utilization of this routine alone has been at the center of many of the Applesoft mathematical irregularities 
when a floating-point numerical value is passed to subsequent arithmetic operations having only a 32-bit 
mantissa when it could easily have a complete and valid 40-bit mantissa. 
 
The SIGNCHK routine at 0xEB82 follows RNDUP and SIGNCHK tests FACEXP for having a zero value or 
FACSIGN for having a negative or a positive value.  If FACSIGN is negative, the A-register is returned 
containing 0xFF and the C-flag is set.  If FACEXP is 0, the A-register is returned containing zero and 
the C-flag is indeterminate.  If FACSIGN is positive, the A-register is returned containing 0x01 and the 
C-flag is clear.  The value in the A-register and/or the setting of the C-flag are far easier to test for 
these simple conditions of the FAC floating-point register.  The Applesoft SGN statement at 0xEB90 follows 
SIGNCHK, and the SGN routine simply calls SIGNCHK and falls directly into the FLOAT routine at 0xEB93 in 
order to create a floating-point value of the SIGNCHK result using an exponent for a single byte value.  SGN 
exits through floating-point normalization.  The Applesoft ABS statement at 0xEBAF simply shifts FACSIGN 
one bit to the right, thus shifting a zero bit into its MSB position.  If the input argument is negative, for 
example, that argument will now be processed as a positive argument.  The FPCOMP routine at 0xEBB2 
follows ABS processing.  The FPCOMP routine saves (A/Y) to DEST and compares the floating-point value 
at DEST to the value that currently resides in the FAC floating-point register.  In order to utilize this routine 
more profoundly, I modified the beginning of FPCOMP to initialize the X-register from either ARGGUARD 
or from FACGUARD.  The X-register is now compared to FACGUARD rather than comparing 0x7F to 
FACGUARD as in the unmodified Applesoft.  Constructing the FPCOMP routine in this fashion allows this 
routine to compare the X-register to other values.  I also modified the final few instructions of FPCOMP 
in order to provide the extra space for X-register initialization, yet these replacement instructions provide 
the same result to FPCOMP. 
 
The FP2INT routine at 0xEBF2 follows FPCOMP.  The FP2INT routine quickly converts the value in the FAC 
floating-point register to an integer value by shifting FACMANT right with sign extension until all of the 
fractional bits have been shifted out.  The FP2INT routine always assumes that FACEXP is less than thirty-
two, otherwise FP2INT utilizes the two’s compliment of FACMANT before any shifting begins.  Directly 
following the FP2INT routine is the Applesoft INT statement at 0xEC23 and INT converts the FAC floating-
point register into a 16-bit integer and then refloats that integer into a floating-point value using floating-
point normalization.  It seems that a faster approach would be to simply clear the lower fractional bits in 
FACMANT to zero.  INT processing also assumes that FACEXP is less than thirty-two.  The INT routine is 
still on my list of routines for further study in order to implement a clear means to accelerate this routine.  
There are ties to the exponential and power routines that must be considered if any modifications are made 
to the current implementation.  The CLRMANT routine at 0xEC40 follows INT processing and CLRMANT clears 
FACMANT to 0.  This short and simple routine is followed by the very lengthy and complex routine GETINT 
at 0xEC4A.  The GETINT routine is 172 bytes in length and it is comprised of six processing units that 
converts a string variable into a floating-point value in the FAC floating-point register.  GETINT is called by 
INPTLIST, FRMELMNT, and VAL with the first character of the string variable already scanned and in the A-
register.  GETINT clears its working area in page-zero from 0x99 to 0xA3 in order to evaluate a string 
variable for its numeric value including +, -, ., and E, as well as + and - that might be associated with E if 
scientific notation is encountered in this string variable.  The GETINT routine performs as intended unless 
the string variable resides at the top of the Character String Pool.  In that situation, GETINT may not 
encounter a NULL character until somewhere, hopefully, in the 0xC0 page.  This situation will always be 
problematic for GETINT whenever HIMEM is initialized to 0xC000.  Fortunately, DOS 4.5.08H utilizes main 
memory from 0xBE00 to 0xBFFF, and HIMEM is always initialized to 0xBE00.  The GETINT routine uses 
CHRGET, DIVFAC10, MULFAC10, NEGFAC, and ADD2FAC for its external resources in order to perform this 
string variable to floating-point value conversion.  The ADD2FAC routine at 0xECF6 follows GETINT.  Here 



 
 

41 

is, yet again, another instance where the Applesoft language developers inserted a complete routine in the 
middle of another complete routine.  The ADD2FAC routine is used by LN and GETINT, yet ADD2FAC is found 
at 0xECD5 in the unmodified Applesoft.  If there was some advantage for incorporating a routine in the 
middle of another routine, I am all ears.  So far, I have not heard one rational reason for this programming 
style, and I am using the programming description generously.  I moved ADD2FAC out of and after GETINT 
processing.  ADD2FAC copies the floating-point value in the FAC floating-point register into the ARG floating-
point register, floats the value that is in the A-register putting that value into the FAC floating-point 
register, and calls ADD to add the two registers leaving their sum in the FAC floating-point register. 
 
I did a substantial reorganization of the floating-point values and the routines that come after ADD2FAC and 
come before FPOUT.  The floating-point values are only used by FPOUT, so they have no business being 
positioned anywhere in Applesoft except where I have placed them just before FPOUT.  The PRTMSG19 
routine, the LINEPRT routine, and MESG19 can be all nicely positioned immediately following ADD2FAC.  I 
wanted to insert another carriage return in the PRLINUM routine just before the RESTART routine.  DOS 
4.5.08H is programmed with my sensibilities to insert an extra carriage return before the next DOS 
command line.  I have become quite accustomed to how nice and uncluttered this makes the presentation 
of the entire monitor display.  And, I want to extend that presentation style to Applesoft.  Some of the 
PRLINUM processing is done by PRTMSG19 at 0xED0A in order to provide the necessary space for that 
additional usage of PRTCR.  I have modified PRTMSG19 to complete PRLINUM processing and then print 
MESG19 as it always has and provide CURLIN, the current line number, in (X/A) to LINEPRT at 0xED18.  
LINEPRT floats the value received in (X/A) and it uses FPOUT by means of LINEOUT to print that floating-
point number.  Because I have the space here at 0xED25, I moved MESG19 to this location in order to provide 
additional space for the other error messages and for GTFORPNT.  The floating-point values that are needed 
for FPOUT processing begin at 0xED2A and FPOUT processing begins at its normal location at 0xED34. 
 
I have already made it abundantly clear why it was unnecessary for the Applesoft language developers to 
differentiate between STR statement processing and FPOUT processing.  The modified Applesoft does not 
differentiate between these two processing routines for the utilization of the STACK.  FPOUT can, therefore, 
make so much better use of its substantial processing space of 332 bytes.  This is one of the more exciting 
routines in all of Applesoft, and I thoroughly enjoyed tearing this routine apart and finding ways to not only 
accelerate its processing, but to add more capabilities to its processing.  FPOUT makes extensive use of the 
registers and I found it foolish to maintain the Y-register as the STACK pointer since numeric values as 
well as other ASCII characters are saved onto the STACK as the processing unfolds.  I devised a subroutine 
to manage a true STACK pointer while items are saved onto the STACK.  Applesoft is designed to provide up 
to nine base-10 digits for display.  The Applesoft floating-point variable having eight bits for its exponent 
and thirty-two bits for its mantissa is designed intentionally to provide this number of accurate digits.  The 
FPOUT routine must ensure that it can present those nine digits without mistake by modifying the value in 
the FAC floating-point register to reside in a specific numerical range using the MULFAC10 and DIVFAC10 
routines.  FPOUT processing can then extract the necessary values to place the sign character if necessary, 
the number of whole digits, the decimal point, the number of decimal digits, and if scientific notation is 
required, an E character, a sign character, and an exponent value.  Once the FAC floating-point register is 
normalized with an exponent that is equal to 0xA0, those various counters for the number of whole digits 
and the number of decimal digits can be initialized.  FPOUT processing utilizes an incredibly complex 
processing loop to determine each and every digit of the floating-point value and in which iteration to place 
the decimal point if at all.  Certainly, if the number does not contain a fractional component, a decimal point 
should not appear in the final integer display.  The FPOUT routine in the unmodified Applesoft does not 
include a 0 placeholder character to the left of the decimal point as in .1234.  I find this annoying and very 
unattractive when presenting numerical information.  Is it so difficult to present such a value in the format 
of 0.1234?  During which numerical iteration should this 0 be written?  What are the conditions?  I found 
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an easy solution once I understood all of the mechanisms that FPOUT utilizes for making all of its other 
decisions.  What I found most interesting was how FPOUT ping-pongs between subtracting a base-10 value 
in order to ascertain the first numerical value to adding a base-10 value in order to ascertain the second 
numerical value and so forth.  And, by design, the FPDECTBL that FPOUT needs for this iteration loop 
contains all nine values from 100 million to 1 in order to present up to nine digits for display.  Once FPOUT 
has written the ASCII data NULL termination byte, FPOUT exits with the address of the STACK in (A/Y). 
 
The Applesoft SQR statement at 0xEE8D follows the FPDECTBL table that is used by FPOUT.  FPDECTBL 
begins at 0xEE5C and it ends at 0xEE7F.  So, there are thirteen bytes from 0xEE80 to 0xEE8D for use by 
SQR processing.  The unmodified Applesoft leverages off of the power operator function and uses a value 
of 0.5 in order to calculate the square root of the input argument to the SQR statement.  According to the 
Basic Programming Reference Manual for Applesoft ][, the Applesoft SQR statement processing is a special 
implementation that is said to execute more quickly than 𝑥^0.5.  However, according to my analysis of SQR 
processing, the Reference Manual could not be more incorrect:  the FAC floating-point register is initialized 
with the value of 0.5 and it falls directly into the power operator function to complete its processing.  This 
processing is exactly like 𝑥^0.5.  As will be presented in the next section, the power operator function 
utilizes the exponentiation of the product from the natural logarithm of the input argument and the value of 
the power argument.  The power operator function depends on processing two Taylor series expansion 
routines and this processing is very expensive in terms of execution time.  There does exist an alternative 
method to calculate the square root of any positive floating-point number.  Isaac Newton, the father of the 
Industrial Revolution, was the first person to recognize and to develop an easy to implement root-finding 
algorithm which produces successively better approximations to the roots of a real-valued function.  When 
Newton’s method is applied to finding the square root of a positive floating-point number, it turns out that 
this specific algorithm is centuries old dating at least to the ancient Babylonians. 
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In this equation, 𝐴 is given as the input argument to the SQR expression and 𝑥' is given as the first guess or 
initial value.  Selecting an appropriate initial value is the most problematic decision that must be made in 
order to significantly reduce the number of iterations to the minimum number possible.  In all of my reading 
on the Newton-Raphson iteration method, I found no useful recommendations for the initial value.  Even 
an acquaintance of mine who has a PhD in mathematics could not provide a useful recommendation except 
to say that any positive value that is not zero would work just fine for the initial value.  After I examined 
a few floating-point numbers, both fractional numbers and numbers that are greater than one, I observed 
that the exponent of its square root value is typically around half of its given value after EXPBIAS is 
removed.  And, that is precisely why the Applesoft language developers utilized the natural logarithm and 
the exponentiation routines.  If the natural logarithm of a number is multiplied by 2, for example, when e 
is raised to that power, the original number is now squared.  Because I had sufficient space within Applesoft 
for the design and the implementation of an algorithm that utilizes the Newton-Raphson iteration method, 
my new SQR algorithm begins with the utilization of the SIGNCHK routine.  If the input argument to the SQR 
function is zero, there is nothing further to do.  If the input argument to the SQR function is negative, I 
issue the Illegal Quantity error message and I terminate further processing.  Otherwise, I copy the FAC 
floating-point register to the T1 floating-point register and process FACEXP which is already in the A-
register.  This simple processing provides me with a very good first approximation for 𝑥'.  Because this 
iterative method is so efficient in calculating a square root value, I setup a loop counter for a maximum of 
seven iterations.  I save the first approximation as well as every successive approximation to the T3 floating-
point register.  The T3 floating-point register is the only other floating-point register besides the FAC and 
the ARG floating point registers that includes a guard byte.  The T3 floating-point register and its guard byte 
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is my design; it is not the design of the Applesoft language developers.  All of the T3 register copy routines 
include the copy of the appropriate guard byte.  Of course, utilizing the T3 floating-point register with the 
DIV routine and followed by the ADD routine provides far more arithmetic accuracy.  Furthermore, I take 
advantage of my modified FPCOMP routine for a more accurate comparison of the new approximation in the 
FAC floating-point register with the previous approximation that was saved in the T3 floating-point register.  
If FPCOMP finds that the two floating-point values are equal or if the iteration counter expires, SQR 
processing exits into the RNDUP routine in order to return the finalized floating-point square root value. 
 
 
 

Transcendental Arithmetic Operations 
 
Applesoft is only generally divided into its collection of statements and routines that perform transcendental 
arithmetic operations.  These arithmetic operations include power, exponential, random number, cosine, 
sine, tangent, and arctangent calculations.  The following is a collection of Applesoft statements and 
routines that perform transcendental arithmetic operations. 
 
The Applesoft ^ statement at 0xEE97 is the power operator function in Applesoft and it directly follows 
SQR processing.  Originally, SQR processing utilized the Applesoft power function and SQR processing 
simply fell into the power function with the FAC floating-point register initialized with the parameter value 
of 0.5.  The power function utilizes the following expression in calculating its power function value into 
the FAC floating-point register: 
 

FAC = EXP[ LN( ARG ) * FAC ] 
 
The floating-point value that is being raised to some power is found in the ARG floating-point register and 
the floating-point value that is equivalent to the power is found in the FAC floating-point register when the 
power expression is evaluated.  Both FACEXP and ARGEXP are tested for zero and processing terminates if 
either exponent is zero.  The FAC floating-point register is copied to the T3 floating-point register and 
ARGSIGN determines whether to process the FAC floating-point register as an integer and compare it to the 
T3 floating-point register or simply note that the value in the ARG floating-point register is positive.  If the 
ARG floating-point register is positive, the FAC floating-point register may contain either a positive or a 
negative floating-point value.  If the ARG floating-point register is negative, the FAC floating-point register 
may only contain any positive or negative integer value.  In this case, if the FAC floating-point register does 
contain a floating-point value, the Illegal Quantity error message is issued and further processing 
terminates.  The ARG floating-point register is copied to the FAC floating-point register and its natural 
logarithm is calculated.  That natural logarithm in the FAC floating-point register and the T3 floating-point 
register are multiplied, and the exponential of their product is calculated.  Both the T3 floating-point register 
and the FAC floating-point register provide a full 40-bit multiplicand and multiplier, respectively. If the sign 
that was initially determined is negative, the power function falls into the NEGFAC routine, otherwise, the 
power function exits with its power function value in the FAC floating-point register.  The Applesoft > 
statement at 0xEED0 is the greater than operator function in Applesoft or the NEGFAC routine, and it directly 
follows the ^ processing.  The NEGFAC routine exits if FACEXP is zero, otherwise the routine exclusively-
ORs FACSIGN with 0xFF. 
 
The eight Taylor series exponential polynomials at 0xEEE0 follow the NEGFAC routine.  These polynomials 
are used to service and conclude exponential processing.  Following the eight exponential polynomials is 
the Applesoft EXP statement at 0xEF09.  EXP processing calculates e  to the power of the input value that 
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currently resides in the FAC floating-point register when the EXP expression is evaluated.  EXP processing 
exits with its result in the FAC floating-point register.  EXP processing converts the input value to a power 
of 2 by multiplying the input value times the base-2 log of e.  The base-2 log of e  is the natural log of e  
divided by the natural log of 2, or ln(𝑒)/	ln(2) 	= 1/	ln(2) = 1.442695041.  The FAC floating-point 
register is processed by RNDUP and then copied to the ARG floating-point register.  FACEXP must be less than 
0x88 in order to continue processing, otherwise an Overflow error message is generated and processing 
terminates.  The FAC floating-point register is converted into an integer in order to generate a new exponent 
for the final fractional value.  I have absolutely no idea why this routine copies the ARG floating-point 
register into the FAC floating-point register using exactly the same procedure as that used in the COPYA2F 
routine, subtracts the two registers, and then negates the FAC floating-point register.  Only an adolescent, 
perhaps a developer, did not realize that -( ARG – FAC ) = ( FAC - ARG ).  This bit of nonsense is deleted 
in the modified Applesoft and only the registers as they are found are subtracted.  A modified Taylor series 
expansion is utilized in order to process the value that is obtained from the floating-point register difference.  
The saved exponent is added to the final value that is obtained after polynomial processing.  The Taylor 
series expansion for e  to the power of any input value 𝑥 is given as follows. 
 

𝑒, =7
x)

k!

¥

)*"

 

 
This Taylor series expansion will converge moderately quickly.  The Applesoft language developers 
modified the exponential polynomials as shown in Table 9 from their theoretical values by increasing the 
polynomials that have even factorials and decreasing the polynomials that have odd factorials.  I have no 
access to the details as to how these pre-calculated polynomial values that are shown in Table 9 were 
mathematically modified and the mathematical rationale that was utilized for those modifications. 
 
 
 

Polynomial Index Applesoft Value Base-10 Value True Value Base-10 Value 
Entries - 1 0x00 0x07 7 0x07 7 

(ln(2)^7)/7!*x^7 0x01 0x71 34583E56 2.14987637E-05 0x70 7FE5FE2B 1.525273380E-05 
(ln(2)^6)/6!*x^6 0x06 0x74 167EB31B 1.43523140E-04 0x74 2184897B 1.540353039E-04 
(ln(2)^5)/5!*x^5 0x0B 0x77 2FEEE385 1.34226348E-03 0x77 2EC3FF3E 1.333355815E-03 
(ln(2)^4)/4!*x^4 0x10 0x7A 1D841C2A 9.61401701E-03 0x7A 1D955B7E 9.618129108E-03 
(ln(2)^3)/3!*x^3 0x15 0x7C 6359580A 0.0555051269 0x7C 635846B8 0.05550410867 
(ln(2)^2)/2!*x^2 0x1A 0x7E 75FDE7C6 0.240226385 0x7E 75FDEFFD 0.2402265070 

ln(2)/1!*x 0x1F 0x80 31721810 0.693147186 0x80 317217F8 0.6931471806 
1.0 0x24 0x81 00000000 1.0 0x81 00000000 1.0 

Table 9.  Applesoft Exponential Function Polynomials 
 
 
 
Two short Applesoft statement routines directly follow the EXP statement routine which includes the 
Applesoft LOG statement at 0xEF3E and the Applesoft PI statement at 0xEF48, both made possible by the 
smart elimination of the register copy and the register negation routines in EXP processing.  The LOG routine 
converts the natural logarithm of the input argument that is evaluated from the LOG expression to the base-
10 logarithm simply by multiplying the value of the natural logarithm and the value of base-10 LOG (𝑒).  
The PI routine uses LOADFAC in order to initialize the FAC floating-point register with the floating-point 
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parameter value of PI, initialize FACSIGN with 0, and initialize FACGUARD with FPIGUARD, or the last eight 
bits of the 40-bit PI mantissa.  Having the value of PI readily available as an Applesoft statement prevents 
having to fumble around for that value or some close approximation to the value of PI and have it already 
in floating-point format with a full 40-bit mantissa.  How excellent is that? 
 
Applesoft polynomial processing comes in two flavors:  sequential or normal polynomial processing as in 
exponential polynomial processing and odd polynomial processing as in natural logarithm polynomial 
processing.  Odd polynomial processing depends on normal polynomial processing after odd polynomial 
processing has prepared the FAC floating-point register with its 𝑥+ value rather than with its 𝑥 value.  
Because there is sufficient space in the modified Applesoft, the sine function can use the POLYSIN entrance 
at 0xEF57 to initialize (A/Y) for COEFPTR at 0xEF5B rather than during sine processing.  Otherwise, 
POLYPROC is the general entrance at 0xEF5B for odd polynomial processing.  POLYPROC uses COPYF2T1 in 
order to copy the FAC floating-point register to the T1 floating-point register, the registers are multiplied, 
and the POLYNOM routine is used to process 𝑥+ with the polynomials whose address is already found at 
COEFPTR.  Once POLYNOM processing is complete, the POLYPROC routine finishes by multiplying the FAC 
floating-point register with the value that was saved in the T1 floating-point register.  The POLYNOM routine 
at 0xEF71 directly follows POLYPROC and POLYNOM is normal polynomial processing.  This routine uses 
the COPYF2T2 routine in order to save the FAC floating-point register to the T2 floating-point register.  I 
modified the general purpose COPYFAC routine to always load the X-register with the value in FACGUARD 
so that FACGUARD is readily available whenever it might be required.  The POLYNOM routine makes use of 
this COPYFAC feature and it saves the X-register to T2GUARD, a new variable that I added to the modified 
Applesoft.  POLYNOM extracts the number of coefficients from COEFPTR, increments COEFPTR, and points 
(A/Y) to the first coefficient in the list of polynomials.  Coefficient processing is a very dense processing 
loop that begins by loading the ARG floating-point register from either a coefficient address or from a register 
address into (A/Y) and saves the value that is in the X-register to ARGGUARD which is new to POLYNOM 
processing.  In effect, this is my attempt to make use of 40-bit mantissas in very dense processing loops 
such as POLYNOM processing.  The FAC and ARG floating-point registers are multiplied, COEFPTR is modified 
to point to the next coefficient, the new coefficient is added to the FAC floating-point register, (A/Y) now 
points to the T2 floating-point register, the X-register is loaded from T2GUARD, the number of coefficients 
is decremented, and if the number of coefficients is not zero, processing continues at the beginning of the 
POLYNOM processing loop.  No matter how many times I review this dense processing loop, I am filled with 
awe at how incredible the Applesoft language developers utilized the fundamental Applesoft floating-point 
arithmetic operations to compute a beautiful Taylor series expansion. 
 
I can only chuckle at the level of disgust that I have for the Applesoft language developers when it comes 
to the routine that directly follows their brilliant POLYPROC and POLYNOM routines.  Surely, did the same 
developers produce all of the incredible Taylor series expansion routines also produce the Applesoft RND 
statement at 0xEFAE?  I am not sure if that is even possible.  The two integer values at 0xEFA6 and 0xEFAA 
that precede the RND statement have given previous Applesoft reviewers issues in understanding why these 
variables are not five bytes in length.  Are they not floating-point variables?  They are used as floating-
point variables by floating-point arithmetic operations.  What is going on in the RND routine? 
 
The random number generator that is utilized in the unmodified Applesoft is faulty, and an article RND is 
Fatally Flawed was submitted to Call A.P.P.L.E. and printed in the January, 1983, issue on pages 29-34.  
This article also presents an alternative routine.  Applesoft initialization only copies the first four bytes of 
the five-byte variable that is utilized as the seed for the next random number iteration.  This seed is utilized 
in the random number generator as a floating-point number rather than as an integer.  The random number 
generator is conflicted in that it attempts to implement a Linear Congruential Generator, or LCG equation 
using floating-point variables.  The Applesoft generator even resorts to byte swapping the first and the third 
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bytes of the final mantissa, a technique that is said to be of last resort even for a lousy implementation of a 
random number generator.  The two four-byte variables that come before the RND routine are used as 
floating-point variables.  Applesoft floating-point variables must be five bytes in size with one byte for the 
exponent and four bytes for the mantissa.  The assumed exponent in these four-byte variables, 0x98 for the 
first and used as a multiplier and 0x68 for the second and used as an addend, differ by 0x30.  Any exponent 
difference that is greater than 0x20 cannot be accommodated by an Applesoft normalization routine.  Are 
these two numbers indeed floating-point variables or are they truly 32-bit integers?  What Mr. Sander-
Cederlof does not explain in his article Random Numbers for Applesoft in the May, 1984, magazine Apple 
Assembly Line, is why the Applesoft RND routine fails to generate more than a few thousand random 
numbers before the full period of its sequence is reached.  He does offer three useable routines that are 
better algorithms according to Donald Knuth in his series of books The Art of Computer Programming.  In 
Volume 2 Seminumerical Algorithms, pages 155 to 157, Knuth discusses using a standard LCG in order to 
easily generate random numbers.  The Applesoft RND routine is written as if it is trying to implement an 
LCG using floating-point variables.  The equation for the standard LCG is given as follows: 
 

𝑋'&! = (𝑋' ∗ 𝐴 + 𝐶)𝑚𝑜𝑑(𝑀) 
 
An LCG is an algorithm that yields a sequence of pseudo-randomized numbers that are calculated with a 
discontinuous piecewise linear equation.  The method represents one of the oldest and best-known pseudo-
random number generator algorithms.  The values for A, C, and M are integer constants.  Historically, poor 
choices for A have led to ineffective implementations of LCGs.  Choosing M to be a power of two such as 
2$+ often produces a particularly efficient LCG.  Correctly choosing the constants A and C will allow a 
sequence period equal to M.  This will occur if and only if 1) M and C are coprime, 2) A-1 is divisible by all 
prime factors of M, and 3) A-1 is divisible by four if M is divisible by four.  Typically, LCGs are fast and 
require minimal memory.  This makes them valuable for simulating multiple independent streams.  LCGs 
are not intended, and must never be used for cryptographic applications.  In practice, LCGs are not suitable 
for large-scale Monte Carlo simulations. 
 
 Knuth specifies M to be 2$+ when A and C are 32-bits in size, so four-byte integer variables are used for A 
and C in the above equation.  Based on the above three rules that Knuth describes in his book, he specifies 
that A should equal 0x12B9B0A5 and C should equal 0x361962EA.  These two values are quite different 
from the values that are found in the unmodified Applesoft.  Applesoft uses 0x9835447A for A and 
0x6828B146 for C.  Where Applesoft goes terribly wrong in implementing the LCG equation shown above 
is that Applesoft uses these two variables as floating-point arguments and processes them with floating-
point arithmetic operations.  Applesoft multiplies the seed at IRAND with its value of A and adds to that 
product its value of C.  Applesoft then implements a modulo 2$+ by changing the resulting exponent to 
0x80 before it normalizes the floating-point value with the final mantissa.  Simply stated, floating-point 
numerical operations are designed to preserve the most significant bits and discard the least significant 
bits during the implementation of those arithmetic operations.  This is not what is intended for the design 
of an LCG that requires a modulo.  Specifically, a modulo dictates that the least significant bits are to be 
preserved and the most significant bits are to be discarded.  A Peasant integer multiply routine will easily 
provide the necessary computation.  Mr. Sander-Cederlof provides his 32-bit integer multiply routine 
claiming that it is tricky and that it uses a minimum of variable and program space.  I do agree that the 
multiply routine that Mr. Sander-Cederlof presents is vastly tricky, yet it is not extraordinary by any means.  
I have great respect for Mr. Sander-Cederlof and he has written a vast amount of revolutionary software.  
However, in this particular instance, the simple Peasant integer multiply routine that I have chosen to use 
in my random number generator is smaller in size and faster in overall computation. 
 
 



 
 

47 

Every culture throughout history teaches their children the method or the algorithm that that culture uses in 
order to multiply two integer numbers by hand.  Some cultures emphasize learning multiplication tables 
whereas other cultures emphasize learning how to quickly divide by two and multiply by two.  The later 
method is known as the Peasant integer multiply routine.  The multiplier is checked for even or oddness 
and then it is halved, any remainder is tossed, and the new value is written below.  The multiplicand is 
scratched out if the multiplier is even, then it is doubled, and the new value is written below.  All of the 
retained multiplicand values are added in order to form the product.  That is precisely how the Peasant 
integer multiply routine operates.  The multiplier resides in the MULMANT register and it contains the four-
byte variable A.  The multiplicand resides in ARGMANT and it contains the four-byte seed IRAND.  The four-
byte variable C is copied into FACMANT which serves as the product register.  After the multiplier in MULMANT 
is shifted right and if the C-flag is set noting an odd number, the multiplicand in ARGMANT is added to the 
product in FACMANT.  Whether an addition occurs or not, the multiplicand is shifted left thus doubling its 
value.  Any MSB bit that is shifted into the C-flag by ARGMANT is discarded.  Using four bytes in each of 
these registers ensure that modulo 2$+ remains in force throughout the required thirty-two iterations. 
 
My RND routine is engineered somewhat similar to how Mr. Sander-Cederlof designed his RND routine 
which he linked to the Apple USR function.  If a negative integer argument is provided to the RND routine 
as in RND(-1234), for example, RND saves that value to IRAND as a positive 32-bit integer which will be 
the seed for the next random number iteration.  If a zero argument is provided to RND as in RND(0), RND 
returns the value that is saved in IRAND as a positive integer value that has a range from zero to 2$! − 1, 
or 0x0000000 to 0x7FFFFFFF.  If a positive integer argument that is equal to 1 is provided to RND as in 
RND(1), RND returns a fractional value that has a range from zero to less than 1 which is simply the integer 
value that is saved in IRAND divided by 2$+.  Finally, if a positive integer argument that is equal to a value 
that is greater than 1 is provided to RND as in RND(192) or RND(280), for example, RND returns an integer 
value that has a range from zero to the supplied integer value minus one.  My RND routine captures the 
integer value of the argument that is provided to RND when the RND expression is evaluated, and if that value 
is greater than zero, that value is saved to the T1 floating-point register as a Range which is a normalized 
floating-point number.  Once the processing of the LCG equation that is shown above is complete, an 
exponent of 0x80 is stored in FACEXP and that 32-bit product integer is normalized as a floating-point 
number using NORMFAC1.  If a Range of 1 is supplied to RND, the normalized floating-point fraction is 
returned unaltered to the user.  Otherwise, that floating-point fraction is multiplied by the value that is stored 
in the T1 floating-point register using MULT, its product is converted to an integer value by INT, and the 
result is returned to the user as a random number integer value. 
 
The Applesoft COS statement at 0xEFEA takes the value that resides in the FAC floating-point register, the 
value in radians that is derived from evaluating the  COS expression, and adds to it p/2.  COS processing 
then falls directly into the Applesoft SIN statement at 0xEFF1.  The Applesoft language developers are not 
implementing a trigonometric identity between COS and SIN, but Applesoft computes COS(x) = SIN(x + 
p/2) simply to extract the sign of the generated numerical value since the COS function lags the SIN 
function by p/2.  SIN processing spends over 60 bytes of processing instructions transforming the input 
argument to reside entirely in Quadrant 1 while taking note of its sign as if the input argument actually 
resides in its intended quadrant.  I have no doubt that there are far easier transformation methods, but the 
floating-point parameters that are required by this processing already exist in Applesoft.  Once quadrant 
transformation is complete, the input argument is processed by a Taylor series of SIN polynomials.  The 
six pre-calculated polynomials in the unmodified Applesoft are modified from the normal Taylor series 
polynomials, yet these polynomials do yield precise values particularly for angles that are not near the limits 
of this function, that is, near zero and near p/2.  The Taylor series that is utilized by the Applesoft SIN 
statement is expressed as follows. 
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This Taylor series will converge because the sign of the terms alternate, the factorial denominators become 
far greater than their numerators, and the radius of convergence is at infinity.  Are these six polynomials 
sufficient for Applesoft to provide a minimum of nine digits of accuracy for the SIN statement, for the COS 
statement, and for the TAN statement where both COS and TAN processing depend on SIN processing? 
 
 
 

Polynomial Index Applesoft Value Base-10 Value True Value Base-10 Value 
Entries - 1 0x00 0x05 5 0x05 5 

-(2p)^11/11!*x^11 0x01 0x84 E61A2D1B  -14.3813907 0x84 F183A7EF  -15.09464258 
(2p)^9/9!*x^9 0x06 0x86 2807FBF8   42.0077971 0x86 283C1A44   42.05869395 
-(2p)^7/7!*x^7 0x0B 0x87 99688901  -76.7041703 0x87 99696673  -76.70585975 
(2p)^5/5!*x^5 0x10 0x87 2335DFE1   81.6052237 0x87 2335E33C   81.60524928 
-(2p)^3/3!*x^3 0x15 0x86 A55DE728  -41.3417021 0x86 A55DE731  -41.34170224 

(2p)*x 0x1A 0x83 490FDAA2   6.283185307 0x83 490FDAA2   6.283185307 

Table 10.  Applesoft Sine Function Polynomials 
 
 
 

Polynomial Index Real Value Base-10 Value 
Entries - 1 0x00 0x0A 10 

(2p)^21/21!*x^21 0x01 0x77 143B8107  0.001130924 
(2p)^19/19!*x^19 0x06 0x7A C5202109  0.012031586 
(2p)^17/17!*x^17 0x0B 0x7D 55761958  0.104229162 
-(2p)^15/15!*x^15 0x10 0x80 B7D6DCF9 -0.718122302 
(2p)^13/13!*x^13 0x15 0x82 747A1A68  3.819952585 
-(2p)^11/11!*x^11 0x1A 0x84 F183A7EF -15.09464258 
(2p)^9/9!*x^9 0x1F 0x86 283C1A44  42.05869395 
-(2p)^7/7!*x^7 0x24 0x87 99696673 -76.70585975 
(2p)^5/5!*x^5 0x29 0x87 2335E33C  81.60524928 
-(2p)^3/3!*x^3 0x2E 0x86 A55DE731 -41.34170224 

(2p)*x 0x33 0x83 490FDAA2   6.283185307 

Table 11.  Expanded Applesoft Sine Function Polynomials 
 
 
 
Table 10 lists the six pre-calculated polynomials that are used for the unmodified Applesoft SIN statement.  
Table 10 also includes the theoretical values for these six pre-calculated polynomials which exposes a 
degree of mathematical manipulation to these SIN polynomials.  I determined that if the theoretical pre-
calculated values for these six polynomials are utilized in Applesoft instead, sufficient calculation 
differences are obtained from the Applesoft SIN function that are not trivial.  There are ten unreferenced 
bytes at 0xF094 that can be eliminated.  These bytes, a little example of narcissism, when exclusively-ORed 
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with 0x87 produce the unusable backward ASCII string MICROSOFT!  Also, moving the initialization of 
(A/Y) to POLYSIN and modifying SIN processing to support TAN processing provide sufficient space to 
add six more pre-calculated SIN polynomials as shown in Table 11, and a modified Applesoft image can 
be generated.  I have yet to find any difference in the output of the unmodified Applesoft versus the modified 
Applesoft when eleven pre-calculated polynomials are used for SIN processing.  I have observed that the 
five pre-calculated polynomials that the Applesoft language developers mathematically modified for the 
unmodified Applesoft produce the same results as if eleven accurately pre-calculated polynomials are 
utilized for SIN processing.  Without knowing any details as to how the pre-calculated polynomials were 
mathematically modified and the mathematical rationale that was utilized for those modifications, I prefer 
to calculate the SIN function using the eleven accurately pre-calculated polynomials that are shown in Table 
11.  At this time, sufficient space is currently available for those additional pre-calculated polynomials.  I 
will, of course, relinquish those 30 bytes of space when and if I absolutely require other functionality. 
 
The Applesoft TAN statement at 0xF03A utilizes SIN processing twice since TAN(x) = SIN(x) / COS(x).  
The SIN function has been designed to provide the necessary signal to the TAN function when the input 
argument resides in another quadrant other than Quadrant 1.  This signal provides proper sign management 
for the final value.  How SIN implements this signal is inefficient, it forces SIN to manage the STACK, and 
it forces TAN to enter SIN processing indirectly by means of a weird JSR/JMP construction.  I was able to 
unravel this entire programming mess simply by introducing a page-zero value called SIGNFLG that uses 
the unused fifth random number seed byte at 0xCD.  These modifications have reduced both SIN and TAN 
processing and have accelerated both routines.  The TAN routine saves the 40-bit SIN mantissa value in the 
T3 floating-point register, obtains the 40-bit COS mantissa value in the FAC floating-point register, copies 
the T3 floating-point register to the ARG floating-point register, and divides those two registers while 
utilizing both FACGUARD and ARGGUARD.  TAN utilizes the most accurate floating-point arithmetic operations 
that are possible in the modified Applesoft, and it maintains 40-bit mantissas throughout the POLYPROC and 
POLYNOM polynomial processing. 
 
The Applesoft ATAN statement at 0xF09E directly follows the eleven SIN polynomials which begin at 
0xF066 and end at 0xF09D.  In order to compute the arctangent, the input argument after evaluating the 
ATAN expression must be folded into the range of [-1,1] in order to utilize a Taylor series expansion.  If the 
argument is greater than 1, its reciprocal is used and noted along with its sign, thus reducing its effective 
range to [0,1].  I did make a slight modification to the ATAN routine to help accelerate its processing.  This 
Taylor series expansion converges slowly, particularly for an argument that is close to one.  Hence, ATAN 
polynomial expansion is very inefficient.  The final output value of the ATAN routine is always in radians.  
The Taylor series expansion for the ATAN function for any input value x is given as follows: 
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The final value is subtracted from 2p after Taylor series expansion if the input argument is inverted.  If the 
input argument is negative, the final value is complimented by NEGFAC.  As stated above, this Taylor series 
expansion is very slow to converge.  Isaac Newton suggested a means to accelerate this convergence that 
was later published by Leonhard Euler.  The Applesoft language developers modified the polynomials that 
are shown in Table 12 from their theoretical values.  These polynomials begin at 0xF0CC, they end at 
0xF108, and they grow substantially smaller as the denominator increases in value.  I have found that the 
sample test data that I utilized in order to compare the angle values that the Applesoft ATAN routine generates 
versus the angle values that a modern day computer generates agree to all nine fractional digits.  I have no 
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access to the details as to how these pre-calculated polynomials that are shown in Table 12 were 
mathematically modified and the mathematical rationale that was utilized for those modifications. 
 
 
 

Polynomial Index Applesoft Value Base-10 Value True Value Base-10 Value 
Entries - 1 0x00 0x0B 11 0x0B 11 
-(1/23)*x^23 0x01 0x76 B383BDD3 -6.84793912E-04 0x7C B21642D1  -0.043478261 
(1/21)*x^21 0x06 0x79 1EF4A6F5  4.85094216E-03 0x7C 430C30DE   0.047619048 
-(1/19)*x^19 0x0B 0x7B 83FCB010 -0.0161117018 0x7C D79435EA  -0.052631579 
(1/17)*x^17 0x10 0x7C 0C1F67CA  0.034209638 0x7C 70F0F0D5   0.058823529 
-(1/15)*x^15 0x15 0x7C DE53CBC1 -0.0542791328 0x7D 88888893  -0.066666667 
(1/13)*x^13 0x1A 0x7D 1464704C  0.0724571965 0x7D 1D89D8A0   0.076923077 
-(1/11)*x^11 0x1F 0x7D B7EA517A -0.0898023954 0x7D BA2E8BA6  -0.090909091 
(1/9)*x^9 0x24 0x7D 6330887E  0.110932413 0x7D 638E38E0   0.111111111 
-(1/7)*x^7 0x29 0x7E 9244993A -0.142839808 0x7E 92492496  -0.142857143 
(1/5)*x^5 0x2E 0x7E 4CCC91C7  0.19999912 0x7E 4CCCCCCD   0.2 
-(1/3)*x^3 0x33 0x7F AAAAAA13 -0.333333316 0x7F AAAAAAAB  -0.333333333 

1.0*x 0x38 0x81 00000000  1.0 0x81 00000000   1.0 

Table 12.  Applesoft Arctangent Function Polynomials 
 
 
 

Applesoft Initialization & Miscellaneous Statements 
 
Applesoft is only generally divided into its collection of statements and routines that manage the 
initialization of Applesoft.  This section of Applesoft also includes several miscellaneous statements.  The 
following is a collection of Applesoft statements and routines that initialize Applesoft and conclude 
Applesoft I that was purchased from Microsoft. 
 
The architecture of the 6502-microprocessor, and later the 65C02-microprocessor, addresses three vectors 
at the very top of its 16-bit address capability.  These vectors include the non-maskable interrupt vector, or 
NMI vector at 0xFFFA:0xFFFB, the RESET vector at 0xFFFC:0xFFFD, and the maskable interrupt vector, 
or IRQ/BRK vector at 0xFFFE:0xFFFF.  A non-maskable interrupt cannot be disabled or ignored using either 
processor instructions or software masks.  On the other hand, a maskable interrupt can be disabled or 
ignored and then re-enabled.  The 6502 or the 65C02 instruction set contains the SEI instruction to disable 
a maskable interrupt and the CLI instruction is used to enable a maskable interrupt.  When the Apple ][ 
computer is powered on, the 6502-microprocessor automatically loads the RESET vector at 
0xFFFC:0xFFFD into the program counter and it continues to fetch instructions beginning from the address 
that is stored at that location.  The ROM RESET handler address that is stored in the RESET vector is memory 
address 0xFA62.  After the ROM RESET handler has initialized the annunciators, the window specifications, 
its CSWL and KSWL interface pointers, and XMODE for the Apple //e, the handler directly enters the NEWMON 
routine at memory address 0xFA81.  After ringing the bell at 0xFF3A, the NEWMON routine calculates its own 
PWRSTATE value and compares that calculation to the value it finds at 0x3F4.  If the comparison fails, the 
hardware is powering up and the NEWMON routine branches to the PWRUP routine at memory address 0xFAA6.  
Otherwise, the routine falls into the NEWMON2 routine that initializes AUTORSET at 0x3F2 with a non-zero 
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value of 0x03 and jumps directly to BASIC which is at 0xE000.  The 0xE000 location as well as the 
0xE003 location for a jump directly to the Applesoft RESTART routine, occur in the middle of the Applesoft 
PTRGET routine.  The 0xE000 location contains a jump directly to the COLDSTRT routine at 0xF125 in the 
modified Applesoft.  The COLDSTRT entry address is 0xF128 in the unmodified Applesoft.  That three-byte 
difference comes from accelerating ATAN processing and removing the fifth byte of the random number 
generator seed which is unnecessary. 
 
Prior to the COLDSTRT routine and just after the ATAN polynomials are the infamous CHRGET and CHRGOT 
routines as well as the four-byte random number generator seed.  There have been reports that Cornelis 
Bongers devised a shorter and accelerated CHRGOT routine.  Since this routine utilizes 24 bytes of page-zero 
memory at 0xB1:C8, that would have been an awesome accomplishment.  The CHRGOT routine absorbs the 
SPACE character 0x20, it clears the C-flag for a numeric value 0x30:39, and it sets the C-flag for all 
other ASCII values.  What is more interesting is that CHRGOT sets the Z-flag if that input character happens 
to be a colon :.  The random number generator seed resides at 0xC9:CC following CHRGOT.  Many of the 
initializations that are performed by the COLDSTRT routine are ridiculous and they serve no purpose or 
benefit.  I have removed all of these particular initializations in the modified Applesoft.  The Applesoft 
COLDSTRT routine sets the Direct Mode flag and the STACK pointer, creates four jump vectors, copies 
CHRGET, CHRGOT, and the random number generator seed to page-zero, initializes some flags and a pointer, 
and determines the end of RAM memory.  The end of RAM memory is the location where MEMSIZE and 
FRETOP are initialized.  Memory location 0x0800 is initialized to zero and PRGTAB is initialized to 0x0801, 
the beginning address for an Applesoft program.  DOS 4.5.08H provides the capability to load and to run 
an Applesoft program at any selected address by initializing PRGTAB to an address that is greater than or 
equal to 0x0801.  I did add the initialization of HRSCALE to COLDSTRT processing because there was 
sufficient space.  The Applesoft COLDSTRT routine calls CKSTRSIZ in order to check the amount of memory 
between arrays and strings, which is of rather dubious value since FRETOP was just initialized to its 
maximum value possible.  The call to SCRTCH initializes RUNFLAG, VARTAB, and PRGEND and falls into 
SETPTRS as previously described.  Finally, the Applesoft COLDSTRT routine completes the initialization of 
two USER vectors and jumps directly to the RESTART routine at 0xD43C.  I have used the reclaimed space 
from the Applesoft COLDSTRT routine from 0xF1B1 to F1D4 for additional FRMSTAK4 processing at 0xF1B1, 
the new Applesoft COPYF2T3 routine at 0xF1BA, a new Applesoft routine that increments the coefficient 
pointer for polynomial processing at 0xF1C5, and a new Applesoft routine that initializes the MULMANT 
register to zero at 0xF1CC.  The COPYF2T3 routine first copies FACGUARD to T3GUARD, a new page-zero 
variable, and then this routine initializes the X-register and the Y-register with the address of the T3 
floating-point register.  The COPYF2T3 routine uses the COPYFAC2 entry point in order to copy the floating-
point number from the FAC floating-point register into the T3 floating-point register. 
 
The Applesoft CALL statement at 0xF1D5 follows the CLEARMUL routine that clears the MULMANT floating-
point register to zero for the MULT routine.  CALL processing evaluates its input expression and converts 
that value into a 16-bit integer value that is saved in LINNUM.  CALL processing simply jumps indirectly to 
that LINNUM address.  The Applesoft IN statement at 0xF1DE follows CALL processing.  IN processing 
evaluates its input expression and converts that value into an 8-bit integer value and leaves that value in the 
FAC floating-point register.  The CONVINT routine copies the least significant byte of FACMANT into the X-
register and returns that value to IN.  IN copies the value that is in the X-register into the A-register 
so that that value can be utilized by the INPORT routine at 0xFE8B in the ROM Monitor.  The Applesoft PR 
statement at 0xF1E5 follows IN processing and PR processing evaluates its input expression in exactly the 
same fashion as IN processing.  The value that is in the X-register is copied into the A-register so that 
that value can be utilized by the OUTPORT routine at 0xFE95 in the ROM Monitor. 
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Management of LORES and HIRES Graphics 
 
Applesoft is only generally divided into its collection of statements and routines that manage the various 
LORES and HIRES graphics.  These graphic routines include PLOT, POSN, HRPLOT, DRAW, XDRAW, and HLIN.  
The following is a collection of Applesoft statements and routines that manage the various LORES and 
HIRES graphics. 
 
The Applesoft PLOTFNS routine at 0xF1EC follows PR processing.  The PLOTFNS routine is used by the 
SCRN( statement, the LINCOOR routine, and the Applesoft PLOT statement.  This routine evaluates an 
expression in order to extract the first coordinate value and the second coordinate value.  The first coordinate 
value is saved to FIRST and the second coordinate value is saved to H2 and V2.  Each comma separated 
value is verified to be less than 48, otherwise Applesoft issues the Illegal Quantity error message.  The 
Applesoft LINCOOR routine at 0xF209 follows the PLOTFNS routine.  The LINCOOR routine is used by the 
Applesoft HLIN statement and by the Applesoft VLIN statement for LORES graphics.  The LINCOOR routine 
utilizes the PLOTFNS routine in order to obtain the start and the end screen coordinates, and it swaps those 
coordinates if the start coordinate is larger than the end coordinate.  Next, the LINCOOR routine verifies the 
presence of the Applesoft AT statement, and it continues to evaluate the expression for a third screen 
coordinate value.  The third screen coordinate value is verified to be less than 48, otherwise Applesoft 
issues the Illegal Quantity error message.  The Applesoft PLOT statement at 0xF225 follows the 
LINCOOR routine.  The PLOT routine utilizes the PLOTFNS routine to obtain the first and the second 
coordinate values and verifies that the first coordinate value is less than 40, otherwise Applesoft issues the 
Illegal Quantity error message.  Applesoft PLOT utilizes the services of ROM Monitor PLOT at 0xF800.  
The Applesoft HLIN statement at 0xF232 follows PLOT processing.  HLIN utilizes LINCOOR to evaluate its 
expression for three coordinate values and verifies that the second coordinate value is less than 40, 
otherwise Applesoft issues the Illegal Quantity error message.  HLIN also utilizes the services of the 
HLINE routine at 0xF819 in the ROM Monitor.  The Applesoft VLIN statement at 0xF241 follows HLIN 
processing.  VLIN utilizes LINCOOR to evaluate its expression for three coordinate values and verifies that 
the third coordinate value is less than 40, otherwise Applesoft issues the Illegal Quantity error message.  
VLIN utilizes the services of the VLINE routine at 0xF828 in the ROM Monitor.   
 
The Applesoft COLOR statement at 0xF24F follows VLIN processing.  COLOR evaluates its input expression 
and converts that value into an 8-bit integer in the X-register, copies the value into the A-register, and 
sets the LORES graphic COLOR variable using the SETCOL routine at 0xF864 in the ROM Monitor.  The 
Applesoft VTAB statement at 0xF256 follows COLOR processing.  VTAB evaluates its input expression and 
converts that value into an 8-bit integer in the X-register, decrements that register, and verifies that the 
final value is less than 24.  The VTAB statement accepts an input range of 1:24 and converts that range to 
0:23 in order to utilize the TABV routine at 0xFB5B in the ROM Monitor.  The Applesoft SPEED statement 
at 0xF262 follows VTAB processing.  SPEED evaluates its input expression and converts that value into an 
8-bit integer in the X-register, copies the value into the A-register, exclusively-ORs that value with 
0xFF, and saves that final value to SPEEDBYT in the modified Applesoft.  In the unmodified Applesoft, the 
final value is incremented so that the fastest Applesoft speed is 0x01 and the slowest Applesoft speed is 
0x00 which is based on the call to WAIT in OUTCHR.  I found that adding any unnecessary wait to Applesoft 
was outrageous and unacceptable.  The modified Applesoft accepts the default input speed of 255, converts 
that to 0, and the modified OUTCHR routine bypasses the call to WAIT when SPEEDBYT is zero.  The 
Applesoft TRACE statement at 0xF26D follows SPEED processing and the Applesoft NOTRACE statement at 
0xF26F follows TRACE processing.  TRACE sets the C-flag and NOTRACE clears the C-flag so that the C-
flag can be used to set or clear the MSB of the TRACEFLG flag. 
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Applesoft utilizes three statements in order to control how ASCII characters are displayed as they are 
written to the TEXT screen.  The ROM Monitor INVFLG flag controls the MSB, or bit-7 of the ASCII 
character and the Applesoft FLASHBYT variable controls bit-6 of the ASCII character.  The proper setting 
of these two variables, INVFLG and FLASHBYT, is handled by the Applesoft NORMAL statement at 0xF273 
to set bit-7 of INVFLG flag and to clear bit-6 of FLASHBYT.  The Applesoft INVERSE statement at 0xF277 
clears bit-7 of INVFLG flag and clears bit-6 of FLASHBYT.  The Applesoft FLASH statement at 0xF280 
clears bit-7 of INVFLG flag and sets bit-6 of FLASHBYT.  The value in FLASHBYT is OR’d with all ASCII 
characters in the OUTCHR routine and the value in INVFLG flag is AND’d with all ASCII characters by the 
COUT routine that is utilized in the OUTCHR routine. 
 
The Applesoft HIMEM statement at 0xF286 follows FLASH processing.  HIMEM evaluates its input 
expression and converts that value into a 16-bit integer that is saved to LINNUM.  LINNUM is compared to 
STREND in order to verify that the new HIMEM address is above all current variables and arrays, otherwise 
Applesoft issues the Out of Memory error message.  The new HIMEM address is saved to MEMSIZE and 
FRETOP.  The HIMEM routine is another example where it is possible to accelerate the processing by pulling 
the error message jump out of the routine.  Instead of branching around the error message jump, I reversed 
the branch logic in order to branch to the error message jump only if there exists an error.  Perhaps it is a 
matter of programming style as some might proclaim.  I perceive it as the rational option and I let faster 
throughput code assist and guide my programming style.  The Applesoft LOMEM statement at 0xF2A6 
follows HIMEM processing.  LOMEM evaluates its input expression and converts that value into a 16-bit integer 
that is saved to LINNUM.  LINNUM is compared to MEMSIZE, and if LINNUM is greater, Applesoft issues the 
Out of Memory error message.  LINNUM is then compared to VARTAB, and if LINNUM is smaller, Applesoft 
issues the Out of Memory error message.  Otherwise, LINNUM is saved to VARTAB and LOMEM processing 
jumps to CLEARC in order to initialize ARYTAB, STREND, and the STACK pointer for this new environment. 
 
The Applesoft ONERR statement at 0xF2CB follows LOMEM processing.  ONERR processing verifies that this 
Applesoft statement is followed by the Applesoft GOTO statement in order for ONERR processing to continue.  
The current TXTPTR value is saved, the ERRFLG is enabled, and the current CURLIN value is saved.  All 
Applesoft statements and commands that are on the same program line and precede the Applesoft ONERR 
GOTO statements are processed normally.  And, whether the DATSCAN routine is called or not, all Applesoft 
statements and commands that are on the same program line and come after the Applesoft ONERR GOTO 
statements are not processed, that is, they are fully ignored and discarded.  ONERR processing jumps to 
DATA2 in order to continue Applesoft program processing.  The Applesoft HANDLERR routine at 0xF2E9 
follows ONERR processing.  HANDLERR is called by PRTERR, ASROMERR, or RESPERR whenever the ERRFLG 
has been enabled.  ONERR processing is another example where the ERRFLG is enabled.  The RESTART or 
ASTROMRM routine is one example where the ERRFLG is disabled.  The HANDLERR routine saves the REMSTK 
value, the CURLIN value, and the TEXTPTR value, and restores the saved TXTPTRSV value to TXTPTR and 
the saved CURLINSV value to CURLIN.  The routine then enters the line number that was provided with the 
Applesoft ONERR GOTO statement and initiates normal Applesoft processing by means of the NEWSTT 
routine.  The Applesoft RESUME statement at 0xF318 follows the HANDLERR routine.  RESUME processing 
restores the saved ERRLIN value to CURLIN, the saved ERRPOS value to TXTPTR, and the saved ERRSTK 
value to the STACK pointer essentially restoring the line number and the text pointer to the very same line 
where Applesoft previously detected an error.  Once the Applesoft error is corrected by the statements that 
reside on the ONERR GOTO program line number, the RESUME statement can be issue in order to retry the 
offending Applesoft program line number.  The Applesoft manual on page 82 suggests utilizing a very 
short routine that will execute at any address and will augment an error-handling routine.  This routine is 
exactly what the RESUME statement accomplishes once the software problem is managed.  For example, an 
ONERR GOTO can be setup to protect a DOS CATALOG command for various volume numbers.  Making 
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volume number a variable that can be managed by Applesoft would certainly allow an Applesoft RESUME 
statement to repeat the DOS CATALOG command until a valid volume number is utilized that does not cause 
a DOS error in an Applesoft program. 
 
The Applesoft DEL statement at 0xF331 follows RESUME processing.  This statement deletes an Applesoft 
program line number or a range of Applesoft program line numbers in both the immediate-execution mode 
and in the deferred-execution mode.  However, if the DEL statement is utilized in the deferred-execution 
mode, the Applesoft program line number or line numbers would be deleted certainly, but the Applesoft 
program would halt in its execution.  There is no workaround such as using the Applesoft CONT statement 
in order to resume Applesoft processing at the next available statement because that capability was simply 
not incorporated into the design of DEL or CONT processing.  DEL processing expects to evaluate at least one 
numerical value, otherwise Applesoft issues a Syntax error message.  DEL processing removes that specific 
program line number if it exists, otherwise Applesoft issues a Syntax error message.  However, if DEL 
processing evaluates a second numerical value that is separated from the first numerical value by a comma, 
a range of program line numbers is removed from an Applesoft program.  This range of program line 
numbers would be from the first numerical value or greater to the second numerical value or lesser.  DEL 
processing tolerates some ignoramus entries such as line 0, negative line numbers, or a range of program 
line numbers from a larger number to a smaller number.  Once DEL processing has removed the target 
program line numbers, the processing jumps to the beginning of the Applesoft interpreter at ASENTER or 
ASROMRST.  DEL processing was simply not designed to resume Applesoft processing at any particular line 
number that might be just prior to or just after the deleted range of line numbers.  I accelerated DEL 
processing slightly by moving an RTS instruction from 0xF364 and I redirected the branch instruction to an 
RTS instruction at 0xF38F which is at the end of the routine.  Actually, any RTS instruction in the vicinity 
would have sufficed only if doing so provided other advantages.  The Applesoft GR statement at 0xF390 
follows DEL processing.  GR processing establishes LORES graphics by disabling HIRES graphics, it enables 
TEXT and mixed graphics, and it utilizes the SETGR routine at 0xFB40 in the ROM Monitor.  The SETGR 
routine disables TEXT and it reiterates enabling TEXT and mixed graphics, it clears the top 40 LORES graphic 
lines, and it sets WNDTOP to 20 so that only four TEXT lines are displayed at the bottom of the screen.  I 
accelerated GR processing in the modified Applesoft by eliminating the duplicate TEXT and mixed graphics 
switch that is already found in SETGR processing.  The Applesoft TEXT statement at 0xF399 follows GR 
processing.  I modified the TEXT processing to simply jump to the INIT2 routine at 0xFB33 rather than to 
SETEXT routine at 0xFB39 in the ROM Monitor.  The INIT2 routine disables HIRES graphics, enables 
PAGE1, enables TEXT, and sets WNDTOP to 0 so that all 24 TEXT lines are displayed on the screen. 
 
I have removed the Applesoft STORE statement at 0xF39F and the Applesoft RECALL statements at 0xF3BC 
in the modified Applesoft since these routines depend on reading and writing data to and from the cassette 
ports that are no longer useful to the Apple ][ user.  More specifically, I have also removed the routines that 
the STORE and the RECALL statements depend on such as the TAPEPNT routine at 0xF7BC and the GETARYPT 
routine at 0xF7D9.  However, after I discovered the brilliant software of Egan Ford, I reinstalled the 
Applesoft RDBYTE routine, the Applesoft LOAD statement, the Applesoft RD2BIT routine, and the Applesoft 
CXREAD routine in order to support reading his Insta-Disk disk images.  The RDBYTE routine, the Applesoft 
LOAD statement, and the RD2BIT routine have already been described.  I placed the CXREAD routine, 
originally found at 0xC5D1 in the Apple //e CXROM, at 0xF39C and I reinstalled the cassette READ routine in 
the ROM Monitor at its traditional location of 0xFEFD.  I continue to have no further use for the cassette 
WRITE routine in the ROM Monitor at its former location of 0xFECD, and that location is currently unused 
and it contains an RTS instruction.  The CXREAD routine reads an audio waveform using the RD2BIT routine 
and its subroutine RDBIT as well as the RDBYTE routine.  An audio waveform is comprised of a HEADER, a 
SYNC, and its DATA as 8-bit bytes.  The CXREAD routine contains the timing information for the various 
waveforms that are utilized in order to differentiate the HEADER, the SYNC, and the DATA fields.  The CXREAD 
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routine may be utilized to LOAD a single Applesoft file into memory or to READ a complete disk image onto 
an initialized diskette.  I have only slightly modified the original CXREAD routine by incorporating a 16 
millisecond delay and CHKSUM initialization before the traditional Wozniak routine begins.  The usual 
procedure is to begin playing the AIFF Insta-Disk recording and then issuing the Applesoft LOAD statement 
on the Apple Command Line.  The binary DATA is saved to memory using the address in A1 until A1 reaches 
the address in A2.  Other routines from the collection of Insta-Disk software drivers perform nearly the 
same function as CXREAD using specific timing information for Insta-Disk data waveforms that can read 
random data up to 8 KHz or even 9.6 KHz.  The CXREAD routine is designed to read a data waveform that 
contains random data having an equal number of zero bits and one bits at 1333 Hz.  It is truly amazing 
what the Apple ][ computer is able to accomplish when it is placed into capable hands. 
 
The Applesoft HGR2 statement at 0xF3D8 and the Applesoft HGR statement at 0xF3E2 both follow the 
CXREAD routine.  Even though it is totally unnecessary for me to modify the software of these two 
statements, I found that I am able to process these two statements faster while adding a more elegant 
transition from the TEXT display to the respective HIRES graphics display after the screen is cleared.  In 
other words, my graphic routines clear the respective HIRES graphics display before I address any soft 
switches.  The viewer is not shown the HIRES graphics display as its memory pages are being cleared as 
the display is shown in the unmodified Applesoft.  Rather, the viewer is shown the HIRES graphics display 
after its memory pages are fully cleared.  To me, this makes a distinct impression when viewing the 
transition from TEXT display to HIRES graphics display.  The Applesoft CLRHIRES routine at 0xF3EC 
follows HGR processing.  Once CLRHIRES has initialized the target memory pages with a value of zero, it 
enables the HIRES graphics display and it disables the TEXT display.  The specific graphic initialization 
routine enables PAGE2 and disables MIXED graphics for HGR2 processing and it enables PAGE1 and enables 
MIXED graphics for HGR processing.  I designed CLRHIRES in such a way that I have also provided an 
additional entry point at 0xF3EE called SETHIRES.  In order for a user to utilize the Applesoft SETHIRES 
routine, the A-register must contain the target HIRES graphics display value which is either 0x20 for 
PAGE1 or 0x40 for PAGE2 and the X-register must contain the value that will be used to initialize the 
target memory pages.  The SETHIRES routine utilizes the COLSHIFT routine in order to invert the memory 
initialization value for all odd memory locations so that color is displayed homogeneously.  It is left to the 
user to enable the appropriate soft switch for PAGE1 or for PAGE2 after SETHIRES returns to the user. 
 
The Applesoft HPOSN routine at 0xF411 follows SETHIRES processing.  HPOSN is used by HRPLOT and by 
DRAWCMD in order to establish the HIRES cursor position on the graphics screen.  This HIRES cursor position 
requires a 16-bit integer value for the horizontal coordinate and an 8-bit integer value for the vertical 
coordinate.  The established Applesoft protocol requires the horizontal coordinate to use the X-register 
for the horizontal LSB coordinate value, the Y-register for the horizontal MSB coordinate value, and the 
A-register for the vertical coordinate value.  A series of highly complex, seemingly bizarre page-zero 
mathematical calculations are employed in order to set GBAS, a 16-bit page-zero address, with the address 
of the vertical scan line and the Y-register with the horizontal byte number for the HIRES cursor.  The 
value in the Y-register is saved to HRHORZ, and when shifted, determines if COLSHIFT is required to 
invert COLBITS which contains the value from HRCOLOR.  After the value in the Y-register is calculated, 
that is, until the C-flag is clear, the value that remains in the A-register ranges from 0xF9 to 0xFF.  That 
negative value is used as an index into BITABLE, an array of seven values.  The selected array value is saved 
to COLOR and that value is used as a mask to operate specifically on the target color pixel that is within the 
selected horizontal byte which is pointed to by the Y-register on the selected vertical scan line whose 
address resides in GBAS. 
  



 
 

56 

 
F411    10 ;         C--A-reg-- -GBASL-- -GBASH-- 
F411 86 E0   11 HPOSN  stx HRXCOOR 
F413 84 E1   12    sty HRXCOOR+1 
F415 85 E2   13    sta HRYCOOR   ; --ABCDEFGH -------- -------- 
F417    14 ; 
F417 48    15 pha       ; --ABCDEFGH -------- -------- 
F418    16 ; 
F418 29 C0   17 and #$C0      ; --AB000000 -------- -------- 
F41A 85 26   18 sta GBASL      ; --AB000000 AB000000 -------- 
F41C    19 ; 
F41C 4A    20 lsr       ; 0-0AB00000 AB000000 -------- 
F41D 4A    21 lsr       ; 0-00AB0000 AB000000 -------- 
F41E    22 ; 
F41E 05 26   23 ora GBASL      ; 0-ABAB0000 AB000000 -------- 
F420 85 26   24 sta GBASL      ; 0-ABAB0000 ABAB0000 -------- 
F422    25 ; 
F422 68    26 pla       ; 0-ABCDEFGH ABAB0000 -------- 
F423 85 27   27 sta GBASH      ; 0-ABCDEFGH ABAB0000 ABCDEFGH 
F425    28 ; 
F425 0A    29 asl       ; A-BCDEFGH0 ABAB0000 ABCDEFGH 
F426 0A    30 asl       ; B-CDEFGH00 ABAB0000 ABCDEFGH 
F427    31 ; 
F427 0A    32 asl       ; C-DEFGH000 ABAB0000 ABCDEFGH 
F428 26 27   33 rol GBASH      ; A-DEFGH000 ABAB0000 BCDEFGHC 
F42A    34 ; 
F42A 0A    35 asl       ; D-EFGH0000 ABAB0000 BCDEFGHC 
F42B 26 27   36 rol GBASH      ; B-EFGH0000 ABAB0000 CDEFGHCD 
F42D    37 ; 
F42D 0A    38 asl       ; E-FGH00000 ABAB0000 CDEFGHCD 
F42E 66 26   39 ror GBASL      ; 0-FGH00000 EABAB000 CDEFGHCD 
F430    40 ; 
F430 A5 27   41 lda GBASH      ; 0-CDEFGHCD EABAB000 CDEFGHCD 
F432 29 1F   42 and #$1F      ; 0-000FGHCD EABAB000 CDEFGHCD 
F434    43 ; 
F434 05 E6   44 ora HRPAG      ; 0-PPPFGHCD EABAB000 CDEFGHCD 
F436 85 27  45 sta GBASH     ; 0-PPPFGHCD EABAB000 PPPFGHCD 
 

Figure 2.  Vertical Coordinate Conversion to GBAS 
 
 
 
Figure 2 displays the processing in HPOSN and how the address in GBAS is calculated from the vertical 
coordinate.  I have always wondered, if Wozniak had utilized a couple more logic chips, could he have 
reduced the complexity of mapping the HIRES display location to memory location?  If he were to achieve 
that capability, would that have actually altered the HIRES animation routines that I incorporated in my 
software development for Sierra On-Line?  My animation routines calculated GBAS by utilizing lookup 
tables that mapped vertical scan line directly to memory address.  One cannot achieve a faster calculation 
than using a lookup table.  Therefore, however Wozniak mapped the HIRES display location to memory 
address using hardware does not really matter when drawing or animating objects on the HIRES graphics 
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display.  One is always bound to use the fastest method possible when critical timing loops are totally 
dependent on how fast one can map a specific display pixel to a specific bit in a specific byte that is within 
the memory range of a HIRES graphics display in the Apple ][ computer.  I continue to be amazed at 
Wozniak’s innovations. 
 
The Applesoft HRPLOT routine at 0xF457 follows HPOSN processing and this routine must be utilized with 
all microprocessor registers configured in order to call the Applesoft HPOSN routine.  Having the Y-
register and GBAS configured accordingly allows this routine to extract the target HIRES byte, mask out 
all of its bits that conform to the color byte in COLBITS, and then mask the specific target pixel or HIRES 
bit using the value in COLOR in order to turn that target pixel ON or OFF.  That final pixel state is saved back 
to the screen within the target HIRES byte.  This is the general procedure that is also used by the Applesoft 
DRAWIT routine.  The Applesoft XDRAWIT routine modifies this general procedure slightly in order to 
achieve the ability to reverse engineer the previous HIRES drawing.  The Applesoft HRMOVLF routine at 
0xF465 follows HRPLOT processing.  This routine is one of four routines that is used to modify the Y-
register and/or the address in GBAS in order to change the HIRES cursor position in one of four directions.  
The HRMOVLF routine essentially moves the HIRES cursor position to the left by decrementing the Y-
register and updating HRHORZ with its new value if necessary, or it updates the value in COLOR by moving 
the bit mask appropriately to the right, and it updates the color byte value in COLBITS simply by falling 
into the Applesoft COLSHIFT routine that was previously used by SETHIRES and HPOSN.  Perhaps this is 
the best time to explain how the Apple ][ hardware draws pixels from the data it finds in memory.  The 
Apple ][ hardware reads a byte of data from HIRES memory whose address is based on the hardware address 
mapper logic and that data is clocked into a shift register.  If the MSB of that data byte is set, the output of 
that shift register is delayed by one period of the 14 MHz clock.  This delay introduces a shift to the phase 
angle relative to color burst which changes the perceived color.   The shift register is always shifted to the 
right such that the LSB is the first data bit to be drawn as a pixel.  If that data bit is ON, that pixel is displayed 
ON and the data byte is shifted to the right six more times.  The last data bit to be displayed in that data byte 
is bit six.  The address mapper increments and the next data byte is displayed.  As soon as the Y-register 
becomes negative, the register is initialized with the value of 39 and COLOR is initialized with the value of 
0xC0 in order to mask bit six, the left-most pixel.  The Applesoft COLSHIFT routine at 0xF47E follows 
HRMOVLF processing.  COLSHIFT simply inverts the value in COLBITS if that value is greater than 0x1F and 
less than 0xE0, otherwise COLSHIFT does not modify the value in COLBITS.  The Applesoft HRMOVRT 
routine at 0xF484 follows COLSHIFT processing.  HRMOVRT moves the HIRES cursor position to the right 
by incrementing the Y-register and updating HRHORZ with its new value if necessary, or it updates the 
value in COLOR by moving the bit mask appropriately to the left, and it updates the color byte value in 
COLBITS.  As soon as the Y-register becomes equal to 40, the register is initialized with the value of 0 
and COLOR is initialized with the value of 0x81 in order to mask bit zero, the right-most pixel.  In summary, 
HRMOVRT shifts the value in COLOR to the left in order to move the pixel cursor position to the right and 
HRMOVLF shifts the value in COLOR to the right in order to move the pixel cursor position to the left. 
 
It amazes me how little testing Randy Wigginton and Cliff Huston must have done when they designed 
their XDRAWIT routine and limited this routine to drawing a SHAPE definition that is only white in color no 
matter what setting is used for HCOLOR= and without regard to the background color.  How impressive is 
that?  Without knowing any more of the history of the development of the Applesoft interpreter when the 
early Apple ][ computer was released for purchase, I can only surmise that time was of the essence in order 
to produce a product quickly and without much regard to whether the best choices were made in the design 
of many of the HIRES routines.  Clearly, the DRAW and the XDRAW functions are not thoroughly well designed.  
When I began my development of SHAPE Manager, I realized that the Applesoft XDRAW function provided 
all of the HIRES drawing capabilities that I needed and were required by SHAPE Manager only after I made 
substantial modifications to Applesoft.  Initially, I was very confused as to what capabilities the DRAW 
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function provides and what capabilities the XDRAW function provides.  The DRAW and XDRAW functions have 
no relationship or interdependencies, and these two Applesoft functions are not designed to be used in 
conjunction with the other.  The DRAW function is designed to manipulate the pixels on the HIRES screen in 
order to place a SHAPE definition which is drawn from a SHAPE table over or on top of whatever HIRES 
pixels are currently being displayed.  There is no mechanism to programmatically remove this SHAPE 
definition except by drawing another SHAPE definition over the same HIRES pixels that are currently being 
displayed.  The DRAW function does not incorporate any of the old HIRES pixel information with any of the 
pixel information in the new SHAPE definition.  The DRAW function draws colors to the HIRES screen such 
that the data that is drawn replaces whatever data may previously exist on the HIRES screen.  The XDRAW 
function incorporates the old HIRES pixel information with the new SHAPE definition pixel data such that 
the new SHAPE definition can be easily removed and the old HIRES pixel information can be restored as it 
was previously simply by performing another XDRAW with the same SHAPE definition at the same screen 
location.  As with all graphic routines that make use of the exclusive-OR microprocessor instruction, color 
complements must be taken into consideration when using the XDRAW function.  The XDRAW function draws 
colors to the HIRES screen such that the data that is drawn becomes the complement of whatever data may 
previously exist on the HIRES screen.  The main purpose in using the XDRAW function is to provide a simple 
way to erase a shape and to easily redraw that same shape or another shape at the same HIRES screen 
location or at another HIRES screen location without erasing the background data.  The DRAW function is far 
more straightforward to use in many respects.  However, shapes that are drawn by the DRAW function cannot 
easily be programmatically removed from the HIRES screen as easily as those shapes that are drawn by the 
XDRAW function.  All HIRES animation uses XDRAW inspired routines.  Both DRAW and XDRAW functions may 
be used from the Apple Command Line or from within an Applesoft program. 
 
I have heavily modified the draw shape routines such that the new Applesoft DRAWHDR routine at 0xF49C 
follows HRMOVRT processing and DRAWHDR prefaces the modified Applesoft XDRAWIT and DRAWIT routines.  
DRAWHDR processes common code from the beginning of the original XDRAW and DRAW routines at 0xF49C 
and 0xF4B3, respectively, in the unmodified Applesoft.  In the modified Applesoft, DRAWHDR processes 
new instructions then enter either the XDRAWIT routine or the DRAWIT routine.  The Applesoft XDRAWIT 
routine at 0xF4A6 follows DRAWHDR processing.  XDRAWIT utilizes COLBITS in order to support color which 
the original XDRAW routine failed to do.  If another object exists at this screen location, XDRAWIT branches 
to increment a common collision counter HRCOLCNT, otherwise XDRAWIT branches to the common 
XDRAW/DRAW routine.  The Applesoft DRAWIT routine at 0xF4B8 follows XDRAWIT processing.  DRAWIT is 
based on the original DRAW routine and if there exists another object at this screen location, DRAWIT falls 
into the collision counter HRCOLCNT before entering the common XDRAW/DRAW routine at 0xF4C2.  Once the 
common XDRAW/DRAW routine displays the intended pixel, the common SHAPE processing begins where the 
C-flag is clear during horizontal processing or the C-flag is set during vertical processing.  In other 
words, every SHAPE command is processed once for its horizontal information and once for its vertical 
information.  If the resulting rotation to the SHAPE results in the C-flag being set, a branch is made to 
HRMOVLF as previously discussed.  Otherwise, SHAPE rotation logic enters the Applesoft HRMOVUP routine 
at 0xF4D1.  If the value in the A-register is negative, a branch is made to the Applesoft HRMOVDN routine 
at 0xF501.  These are the last two routines of four that are used to modify the Y-register and/or the 
address in GBAS in order to change the HIRES cursor position in one of four directions.  HRMOVUP modifies 
GBAS in order to move up one scan line or to move to the very last scan line whose address is HRPAG plus 
0x1FD0.  I removed the unnecessary clc instruction from the top of this routine.  The Y-register, the 
COLOR variable, and COLBITS variable are never modified.  HRMOVDN also modifies GBAS in order to move 
down one scan line or to move to the very first scan line whose address is found in HRPAG.  I removed the 
unnecessary clc instruction from the top of this routine and I added a true termination at the end of this 
routine in order to accelerate processing.  Once again, the Y-register, the COLOR variable, and the 
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COLBITS variable are never modified.  The BITBYT table values that are utilized by HRMOVUP and HRMOVDN 
at 0xF52D follow HRMOVDN processing.  And, the BITABLE table at 0xF530 follows the BITBYT values.  
Again, the BITABLE is utilized by the Applesoft HPOSN routine in order to initialize the COLOR variable. 
 
The Applesoft HLIN routine at 0xF53A follows the BITABLE table values.  HLIN is only used by HPLOT and 
it would have been far more practical to include HLIN inline within HPLOT and four bytes would have been 
saved.  However, HLIN can be utilized by an external user to Applesoft in order to draw one HIRES line.  
As documented in the DOS 4.5 Volume and File Disk Management System Second Edition, HLIN is 
hopelessly flawed.  I have always disliked the unsymmetrical look of a HIRES diagonal line when it is 
drawn either in the horizontal or in the vertical direction ever since I acquired my Apple ][+.  And this same 
HLIN routine persists in the Applesoft of the Apple //e unchanged, which is shameful in my opinion.  After 
I analyzed HLIN, I found that the routine does not correctly calculate the delta difference of the horizontal 
and of the vertical start to end points before drawing the requested line.  It is easy to demonstrate this error 
before and after installing the modified Applesoft or by using an assembly language routine that contains 
the HLIN routine with and without the necessary modifications.  There are two memory locations that 
require a small code adjustment.  The first code adjustment is made at 0xF57A and the second code 
adjustment is made at 0xF5A5.  You will simply be amazed at how lovely and symmetrical diagonal lines 
are drawn either from left to right, from right to left, from top to bottom, or from bottom to top.  I am 
literally appalled that the original Applesoft passed any sort of testing and/or code review vis-à-vis how 
trivial these two modification are and how elegant the results appear to be.  The established Applesoft 
protocol for HLIN requires the horizontal coordinate to use the A-register for the horizontal LSB end 
coordinate value, the X-register for the horizontal MSB end coordinate value, and the Y-register for 
the vertical end coordinate value.  This protocol is different from the protocol that is used for HPOSN which 
establishes the start coordinates.  I used the rts instruction at 0xF52C for the branch instruction at 0xF59C 
and I replaced the bvc instruction at 0xF5B0 with a jmp instruction because I have the Applesoft space. 
 
HLIN always draws a HIRES line from the start coordinates that are established by HPOSN or from the end 
coordinates of a previous call to HLIN to the end coordinates of the current call to HLIN.  HLIN utilizes the 
four routines that are used to modify the Y-register and/or the address in GBAS in order to change the 
HIRES cursor position in one of four directions:  HRMOVLF to move left, HRMOVRT to move right, HRMOVUP 
to move up, and HRMOVDN to move down.  The preprocessing that HLIN performs initially is to establish the 
flag value for 0xD3 where bit six determines whether HRMOVLF or HRMOVRT is utilized and bit seven 
determines whether HRMOVUP or HRMOVDN is utilized.  The four possible values that are found at 0xD3 are 
0x00, 0x7F, 0x80, and 0xFF.  HLIN preprocessing also calculates the horizontal and the vertical deltas 
between the start and the end coordinates and it sums those deltas in order to create the total number of 
iterations that are required to draw a particular HIRES line.  For example, it requires 472 iterations to draw 
a HIRES line from coordinate 0,0 to coordinate 279,191, that is, 280 + 192 = 472.  By means of the 
continual subtraction of the vertical delta from the horizontal delta, HLIN transitions from horizontal 
processing to vertical processing.  HLIN utilizes the identical set of HIRES drawing instructions that are 
found in DRAWIT.  Thus, a HIRES line that is drawn by HLIN does not incorporate any of the current HIRES 
pixel information with any of the pixel information that is part of the new HIRES line.  HLIN draws a colored 
line to the HIRES screen such that the data that is drawn replaces whatever data may previously exist on the 
HIRES screen.  Other than the two modifications that I made to HLIN in order to correct its flawed logic, 
the HLIN routine is a well-conceived routine that performs its task as efficiently as possible. 
 
The Applesoft ROTATBL table at 0xF5B3 follows HLIN processing and the values that comprise this table 
are used to rotate a SHAPE in steps of 5.625 degrees in any single quadrant.  ROTATBL provides seventeen 
entries where the first sixteen cosine entries are used to initialize the horizontal ROTHVAL variable and the 
last sixteen sine entries are used to initialize the vertical ROTVVAL variable.  In other words, fifteen of the 
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ROTATBL values are shared by the ROTHVAL and ROTVVAL variables.  The values that are contained in 
ROTATBL are calculated as cosine products using the expression COS( 90 * X/16 ) * 0x100.  The 
unmodified Applesoft uses a multiplication factor of 0xFF rather than 0x100 as in the modified Applesoft.  
This multiplication factor is quite critical because the horizontal and the vertical summation registers are 
based on setting the C-flag when their sum exceeds 0x100 and NOT 0xFF.  The 6502 and the 65C02 
microprocessor instruction set does not provide any branch instructions that are based on exceeding the 
value of 0xFF.  Yet, the unmodified version of Applesoft persists in using this logic to its detriment when 
it calculates the values for ROTATBL.  The value of 0x00 should be utilized for no rotation rather than 0xFF.  
This seemingly small difference of opinion will be highlighted very soon in this discussion. 
 
The Applesoft DRAWCMD routine at 0xF5C7 follows the ROTATBL table and this routine is utilized specifically 
by the Applesoft DRAW statement and by the Applesoft XDRAW statement.  The DRAWCMD routine in the 
modified Applesoft is based on a unique design that combines the Applesoft DRWPNT routine and the 
common components of the XDRAW1 and the DRAW1 routines which become the DRAWSHP routine that is 
only found in the unmodified Applesoft.  The XDRAW1 and the DRAW1 routines are nearly identical except 
for their unique pixel processing instructions which I have extracted into the XDRAWIT and the DRAWIT units 
of DRAWHDR that are only found in the modified Applesoft.  DRAWHDR utilizes a unique flag in OPRND that is 
used to select either XDRAWIT or DRAWIT, and this flag is initialized to one value by the Applesoft XDRAW 
statement or to another value by the Applesoft DRAW statement.  Not only have I extracted a sizeable amount 
of common code from the unmodified Applesoft, but I have also accelerated the drawing of a SHAPE 
definition.  The first part of DRAWCMD, that is, the DRWPNT routine that is in the unmodified Applesoft, 
evaluates the expression of either the XDRAW or the DRAW statements for the requested SHAPE definition that 
is contained in the given SHAPE table.  The user must have already initialized the HRSHPTBL variable with 
the 16-bit address of the SHAPE table that must already reside in memory.  The DOS 4.5.08H SHLOAD 
command performs the initialization of the HRSHPTBL variable automatically as well as initializing FRETOP 
and HIMEM in order to protect the SHAPE table usually from the Character String Pool.  If the user selects a 
valid SHAPE definition, DRAWCMD locates the data for that selected SHAPE definition and initializes the SHAPE 
variable with the address that points to the data of that selected SHAPE definition.  DRAWCMD further evaluates 
the given expression for the Applesoft AT statement if it should exist.  If the AT statement does exist in the 
expression, DRAWCMD uses the Applesoft GETFNS routine in order to extract and range check the horizontal 
and the vertical coordinates in where to draw the first pixel of the requested SHAPE definition on the HIRES 
screen.  With all three microprocessor registers initialized with the values of the horizontal and the vertical 
coordinates, DRAWCMD calls HPOSN in order to calculate the 16-bit scan line address for GBAS and the 
horizontal byte number for the Y-register.  If the AT statement is not found in the given expression, the 
requested SHAPE definition is drawn starting at the last pixel drawn by the most recently executed HPLOT, 
XDRAW, or DRAW statement.  Applesoft is certainly not designed to verify the validity of the current values 
that reside in the HRXCOOR or the HRYCOOR variables, so if these variables contain erroneous values, the 
requested SHAPE definition might be drawn outside of the selected HIRES screen which could potentially 
destroy the contents of memory throughout the Apple ][ computer.  At this point in the processing of the 
equivalent DRWPNT routine, processing would have completed and would have returned to its caller.  
However, in the modified Applesoft, DRAWCMD now begins the common processing that is found in the 
XDRAW1 and in the DRAW1 routines, that is, the DRAWSHP routine that is found in the unmodified Applesoft. 
 
Applesoft is capable of rotating a SHAPE definition in all four quadrants, so the rotation value that is found 
in HRROT has a range of 00:63.  Each quadrant contains sixteen possible rotations with some constraints 
imposed by the scale value that is found in HRSCALE.  At 0xF600, the value in HRROT is divided by sixteen 
and the target quadrant number is saved to ROTQVAL.  The masked value of HRROT is used to select the 
requested quadrant rotational value from ROTATBL for the horizontal component that is saved to ROTHVAL 
and for the vertical component that is saved to ROTVVAL.  The Y-register is restored from HRHORZ and 
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the collision counter HRCOLCNT is initialized to 0.  At this point in DRAWSHP processing, the modified 
Applesoft DRAWCMD makes a dramatic diversion in order to implement the design of a far superior SHAPE 
drawing algorithm.  In the unmodified Applesoft, the fractional vectors ROTHSUM and ROTVSUM are both 
initialized with 0x80 whenever a SHAPE vector is obtained from a new value that is read from the SHAPE 
table or from a value that is shifted from the current SHAPE table value.  These two fractional vectors 
determine when it is time to draw a horizontal or cosine pixel and when to draw a vertical or sine pixel.  
Whenever their value overflows 0x100 by successively adding the ROTHVAL value to ROTHSUM and adding 
the ROTVVAL value to ROTVSUM, the C-flag becomes set and a new pixel is drawn.  This algorithm yields 
the example SHAPE definition that is shown in Figure 3 using all sixty-four values in HRROT having a scale 
value of eleven in HRSCALE.  Figure 3 easily shows the visual distortions, the angle irregularities, and the 
unequal length of all lines other than at the precise horizontal and vertical axes.  The DRAWSHP routine that 
is used in the unmodified Applesoft is simply wrong, unacceptable, and rather useless. 
 
 
 

	

Figure 3.  Unmodified Applesoft DRAWCMD 
	

Figure 4.  Modified Applesoft DRAWCMD 
 
 
 
The SHAPE drawing algorithm in the modified Applesoft that is found in DRAWCMD begins by initializing a 
new page-zero variable called SHPOLD with the value of 0xFF before the collision counter HRCOLCNT is 
initialized to 0.  As long as the next SHAPE vector, either from a new value that is read from the SHAPE table 
or a value that is shifted from a current SHAPE table value, does not change, ROTHSUM and ROTVSUM are not 
reinitialized.  When SHPOLD is not equal to the current SHAPE vector as in the initial state of 0xFF, the 
current SHAPE vector is saved to SHPOLD and ROTHSUM and ROTVSUM are initialized to 0x00 and not to 
0x80.  The X-register is initialized with the value in HRSCALE and the remaining scale-loop processing 
in DRAWCMD is the essentially the same as in DRAWSHP where DRAWHDR is called with the C-flag clear 
whenever a horizontal pixel is drawn and DRAWHDR is called with the C-flag set whenever a vertical pixel 
is drawn.  The state of the C-flag prior to calling DRAWHDR is used in the summation of SHPVAL and 
ROTQVAL in order to determine the next pixel cursor move direction that will either modify GBAS and/or 
modify the Y-register.  I find it truly amazing that with all of the processing that occurs in DRAWHDR that 
the state of the C-flag is maintained until much later when the summation of SHPVAL and ROTQVAL occurs.  
The results of this far superior SHAPE drawing algorithm is shown in Figure 4.  Figure 4 shows that there 
are no longer any visual distortions, all angles are regular and equal, and the lengths of all sixty-four lines 
or spokes are equal to the precise horizontal and vertical axes.  Can this SHAPE display get any better?  NO!  
This SHAPE display is the best possible display that can be obtained from any SHAPE drawing algorithm.  
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What is most remarkable about this unique algorithm is that it only costs eight extra bytes of code and a 
single page-zero variable.  Furthermore, this algorithm confirms that initializing ROTHSUM and ROTVSUM 
with 0x80 is not correct and that the calculation and utilization of the values in ROTATBL is not correct in 
the unmodified Applesoft.  DRAWCMD in the modified Applesoft is the correct algorithm. 
 
A tremendous amount of Applesoft space is now available in the modified Applesoft after identifying the 
common components of the XDRAW1 and the DRAW1 routines and removing their duplicate components.  
After DRAWCMD processing, there is enough Applesoft space for the continuation of SQR at 0xF666, for the 
continuation of COPYA2F at 0xF68E, for the continuation of COPYF2A at 0xF693, and for the new Applesoft 
COPYT32A routine at 0xF6A8.  COPYT32A first copies T3GUARD to ARGGUARD and then this routine initializes 
the A-register and the Y-register with the address of the T3 floating-point register.  COPYT32A uses 
the LOADARG routine in order to copy the floating-point number from the T3 floating-point register into the 
ARG floating-point register.  There are five unused bytes at 0xF6B4. 
 
The Applesoft GETFNS routine at 0xF6B9 follows COPYT32A processing and this routine is used by DRAWCMD 
and by HPLOT.  As previously detailed, GETFNS evaluates a statement expression and it extracts and range 
checks the horizontal and the vertical coordinates in where to draw the first pixel of the requested SHAPE 
definition or HLIN on the HIRES screen.  With all three microprocessor registers initialized with the values 
of the horizontal and the vertical coordinates, DRAWCMD can call HPOSN directly or HPLOT can call HPOSN 
indirectly by means of HRPLOT.  The call to HPOSN uses the values that are found in all three microprocessor 
registers in order to calculate the 16-bit scan line address for GBAS and the horizontal byte number for the 
Y-register.  GETFNS range checks the horizontal coordinate value to be less than 280 and the vertical 
coordinate value to be less than 192.  GETFNS also syntactically verifies that there exists a comma between 
the two coordinate values.  The Applesoft HCOLOR statement at 0xF6E9 follows GETFNS processing.  
HCOLOR evaluates the statement expression for its value, and that value is range checked and utilized as an 
index into the HRCOLTBL table of color values.  HCOLOR extracts the HRCOLTBL color value and it saves that 
color value to HRCOLOR.  The Applesoft HRCOLTBL table is at 0xF6F6 and it follows HCOLOR processing.  
The HRCOLTBL color value table is comprised of eight color values from two color groups.  Earlier in this 
discussion about the COLSHIFT routine, I pointed out that when the Apple ][ hardware reads a byte of data 
from HIRES memory whose address is based on the hardware address mapper logic, that data is clocked 
into a shift register.  If the MSB of that data byte is set, the output of that shift register is delayed by one 
period of the 14 MHz clock.  This delay introduces a shift to the phase angle relative to color burst which 
changes the perceived color.   The two color groups that form the HRCOLTBL table of color values consists 
of four values whose MSB is OFF and another set of identical values whose MSB is ON.  The first color 
group contains the color values for the colors BLACK1, GREEN, PURPLE, and WHITE1.  The second color 
group contains the color values for the colors BLACK2, ORANGE, BLUE, and WHITE2.  Of course, individual 
television or monitor circuits may present the color of these color values somewhat differently or with a 
different hue.  The horizontal and the vertical timing circuits in the Apple ][ computer are close enough to 
the older NTSC standard or to the more recent ATSC standard:  the signals do not need to be that precise. 
 
The Applesoft HPLOT statement at 0xF6FE follows the HRCOLTBL color value table.  HPLOT can be utilized 
in three construction formats:  1) horizontal and vertical coordinates are specified, 2) the Applesoft TO 
statement is followed by horizontal and vertical coordinates, 3) horizontal and vertical coordinates are 
specified, the Applesoft TO statement is specified, then horizontal and vertical coordinates are specified.  If 
the first construction format is found, HPLOT calls HRPLOT to draw a single pixel on the appropriate HIRES 
screen.  The Applesoft TO statement followed by horizontal and vertical coordinates construction format 
may be repeated any number of times until a TO statement is no longer found.  Once HPLOT evaluates its 
expression for the TO statement, the values for the coordinates are obtained by means of GETFNS.  The 
coordinate values are rearranged in the microprocessor registers so that they are made compatible to the 
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input requirements of HLIN.  HLIN draws the requested line on the appropriate HIRES screen and the HPLOT 
expression is further evaluated for another TO statement, otherwise HPLOT processing exits.  Merely by 
inspection, HLIN exits when its COLCOUNT variable becomes equal to zero at 0xF59C since HLIN has no 
other exit path.  I find it interesting that the Applesoft developers did not utilize this fact about HLIN since 
they used a very expensive jmp jump instruction at 0xF71E rather than the valid beq branch instruction.  It 
just seems out of character from the Applesoft language developers who appeared to leverage off of every 
possible nuance they programmed into their routines.  There would be no point in modifying HPLOT since 
another Applesoft statement follows HPLOT and whose entry address I wish to maintain.  The Applesoft 
ROT statement at 0xF721 follows HPLOT processing.  ROT evaluates its statement following an equal sign 
for a rotational value which it stores in HRROT.  ROT does not mask this value with 0x3F or range check this 
value to be less than 64.  However, the HRROT value is indirectly masked when its upper nibble is utilized 
in the summation of SHPVAL and ROTQVAL and clamped by a comparison.  The Applesoft SCALE statement 
at 0xF727 follows ROT processing.  SCALE evaluates its statement following an equal sign for a scale value 
which it stores in HRSCALE.  The value in HRSCALE can range from 0:255 where a value of 0 is interpreted 
to be 256.  A value of 1 for HRSCALE would provide a point for point reproduction of a SHAPE definition.  
Applesoft does not initialize the value in HRSCALE even in the Applesoft COLDSTRT routine.  It is important 
to remember to initialize the value in HRSCALE before using the Applesoft XDRAW or DRAW statements.  
However, the modified Applesoft does initialize HRSCALE to 1 in COLDSTRT due to available space. 
 
Another large amount of Applesoft space is now available in the modified Applesoft where the Applesoft 
DRWPNT routine was placed at 0xF72D.  DRWPNT is incorporated into DRAWCMD in the modified Applesoft.  
Since I have combined the common components of XDRAW1 and DRAW1 from the unmodified Applesoft and 
incorporated those common components into DRAWCMD, I have removed the DRWPNT routine.  The Applesoft 
space at 0xF72D in the modified Applesoft is now used for the continuation of the processing for RND.  This 
section of RND processing utilizes the Peasant algorithm in order to multiply ARGMANT and MULMANT and 
save its 32-bit integer product into FACMANT and IRAND.  However, this RND processing must straddle the 
next two Applesoft statements so that the remaining RND processing at 0xF775 can convert the 32-bit 
integer currently in FACMANT into a floating-point fraction.  That floating-point fraction is either returned 
to the user without further modification or, if the user supplied a Range value, that floating-point fraction 
is multiplied by the Range value that was saved in TEMP1.  An Applesoft floating-point multiply routine 
can now be used safely for the Range value multiplication.  The product of the Range value multiplication 
is converted into an integer and that integer is returned to the user either for possible plotting or for graphing. 
 
The third to last and second to last Applesoft statements are the Applesoft DRAW statement at 0xF769 and 
the Applesoft XDRAW statement of 0xF76F.  These two statements reside at the very same memory location 
as found in the unmodified Applesoft, and they follow DRWPNT processing in that version of Applesoft.  I 
developed a unique software design for these two statements in order to easily differentiate their utilization 
by their common DRAWHDR routine.  In the modified Applesoft, DRAWHDR incorporates some common 
processing before choosing whether to enter the processing of XDRAWIT or to enter the processing of 
DRAWIT.  That choice or decision is entirely based on the value that DRAW saves into the OPRND variable flag 
or the value that XDRAW saves into the OPRND variable flag.  If the MSB of the OPRND flag is set, then 
DRAWHDR continues its processing using XDRAWIT.  If the MSB of the OPRND flag is clear, then DRAWHDR 
continues its processing using DRAWIT.  In other words, DRAW clears the MSB of the OPRND flag and XDRAW 
sets the MSB of the OPRND flag.  Both statements utilize DRAWCMD in order to begin drawing the selected 
SHAPE definition on the selected HIRES display from the SHAPE table that is currently in memory. 
 
The Applesoft interpreter in the modified Applesoft ends at 0xF791 after seven bytes of unused space.  I 
have placed the ROM Monitor TITLE at 0xF791 which is a unique ASCII string, and when this ASCII 
string is displayed, the ROM Monitor TITLE Apple //e+ is shown centered at the top of the TEXT display.  
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How fun is that!  A number of modifications were made to Applesoft that was installed in the Apple //e 
computer when that computer was first introduced in the early 1980’s.  These Applesoft modifications were 
made in order to support an 80 column TEXT display and to support lower case  in Applesoft program entry 
and utilization.  The first three modification routines are at 0xF79B, 0xF7A0, and 0xF7AE, and these 
modification are used in the Applesoft PARSE routine that begins at 0xD56C.  Two more modification 
routines are at 0xF7BE and 0xF7C6, and these modifications are used in the Applesoft LIST statement that 
begins at 0xD6A5.  The modification routine at 0xF7C6 and another modification routine at 0xF7D5 are 
both used in the Applesoft PRINT statement that begins at 0xDAD5.  The final modification routine at 
0xF7DC is loosely tied to the modification routine at 0xF7D5 depending upon the setting of the MSB in the 
RDVID80 switch at 0xC01F.  This final modification is utilized by the very last Applesoft statement HTAB.  
The Applesoft HTAB statement at 0xF7E7 is the last and final Applesoft statement and this statement is 
located, remarkably, at its traditional Applesoft location.  However, its processing is somewhat modified 
since HTAB now depends on the final modification routine at 0xF7DC.  This final modification maintains 
the location of the horizontal TEXT cursor not only at CH, but also at OURCH for 80 column display utilization.  
It is rather interesting that some narcissistic individual placed their initials in the final three bytes of the 
unmodified Applesoft that is found in the Apple ][+, that is, the Applesoft that does not support 80 column 
display and lower case entry.  Those three bytes, however, are utilized in the Apple //e Applesoft that does 
support 80 column display and lower case entry.  Thank goodness a clever software engineer was able to 
utilize just the right amount of available Applesoft space to transform the HTAB statement in order for HTAB 
to support the utilization of the 80 column display and to allow the entry of and the utilization of lower case 
ASCII characters in the Apple //e computer. 
 
 
 

Derived Transcendental Arithmetic Operations 
 
The Basic Programming Reference Manual for Applesoft ][ on pages 103-104 lists all of the derived 
transcendental arithmetic operations that can be calculated from the Applesoft intrinsic transcendental 
arithmetic operations.  These intrinsic transcendental arithmetic operations include, of course, the sine, 
cosine, tangent, arctangent, logarithm, and the exponential operation.  The arithmetic operations that 
support the intrinsic transcendental arithmetic operations include subtraction, addition, multiplication, 
division, and the square root function as well as the SGN function.  These intrinsic Applesoft operations are 
utilized in order to calculate all of the following derived transcendental arithmetic operations.  These 
Applesoft operations may also be implemented by using the Applesoft DEF FN statement pair. 
 
 
The secant, denoted as sec, is a trigonometric function that is defined as the ratio of the length of the 
hypotenuse to the length of the side that is adjacent to a given angle in a right triangle.  The secant is also 
the reciprocal of the cosine function as long as the cosine function is not zero.  The sec is expressed 
mathematically as 
 

SEC(X) = 1 / COS(X) 
 
 
The cosecant, denoted as csc, is a trigonometric function that is defined as the ratio of the length of the 
hypotenuse to the length of the side that is opposite to a given angle in a right triangle.  The cosecant is 
also the reciprocal of the sine function as long as the sine function is not zero.  The csc is expressed 
mathematically as 
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CSC(X) = 1 / SIN(X) 
 
 
The cotangent, denoted as cot, is a trigonometric function that is defined as the ratio of the length of the 
adjacent side to the length of the opposite side in a right triangle.  It can also be expressed as the cosine 
of an angle divided by the sine of that same angle as long as the sine function is not zero or as the 
reciprocal of the tangent function as long as the tangent function is not zero.  The cot is expressed 
mathematically as 
 

COT(X) = COS(X) / SIN(X) = 1 / TAN(X) 
 
 
The inverse sine or arcsin, denoted as sin-1, is the inverse function of the sine trigonometric function.  
It is used to find the angle whose sine value is a given number.  The arcsin is expressed mathematically 
as 
 

ARCSIN(X) = ATN( X / SQR( 1 - X2 ) ) 
 
 
The inverse cosine or arccos, denoted as cos-1, is the inverse function of the cosine trigonometric 
function.  It is used to find the angle whose cosine value is a given number.  The arccos is expressed 
mathematically as 
 

ARCCOS(X) = -ATN( X / SQR( 1 - X2 ) ) + PI/2 
 
 
The inverse secant or arcsec, denoted as sec-1, is the inverse function of the secant trigonometric 
function.  It is used to find the angle whose secant value is a given number.  The arcsec is expressed 
mathematically as  
 

ARCSEC(X) = ATN( SQR( X2 - 1 ) ) + ( SGN(X) - 1 ) * PI/2 
 
 
The inverse cosecant or arccsc, denoted as csc-1, is the inverse function of the cosecant trigonometric 
function.  It is used to find the angle whose cosecant value is a given number.  The arccsc is expressed 
mathematically as 
 

ARCSEC(X) = ATN( 1 / SQR( X2 - 1 ) ) + ( SGN(X) - 1 ) * PI/2 
 
 
The inverse cotangent or arccot, denoted as cot-1, is the inverse function of the cotangent 
trigonometric function.  It is used to find the angle whose cotangent value is a given number.  The arccot 
is expressed mathematically as 
 

ARCCOT(X) = -ATN(X) + PI/2 
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The hyperbolic sine or sinh is the hyperbolic function of the sine trigonometric function and it is based 
on hyperbolic geometry.  Hyperbolic geometry is based on the hyperbola rather than the circle.  The sinh 
is expressed mathematically as 
 

SINH(X) = ( EXP(X) - EXP(-X) ) / 2 
 
 
The hyperbolic cosine or cosh is the hyperbolic function of the cosine trigonometric function and it is 
based on hyperbolic geometry.  Hyperbolic geometry is based on the hyperbola rather than the circle.  The 
cosh is expressed mathematically as 
 

COSH(X) = ( EXP(X) + EXP(-X) ) / 2 
 
 
The hyperbolic tangent or tanh is the hyperbolic function of the tangent trigonometric function and it 
is based on hyperbolic geometry.  Hyperbolic geometry is based on the hyperbola rather than the circle.  
The tanh is expressed mathematically as 
 

TANH(X) = - EXP(-X) ) / ( EXP(X) + EXP(-X) ) * 2 + 1 
 
 
The hyperbolic secant or sech is the reciprocal of the hyperbolic cosine function and it is based on 
hyperbolic geometry.  Hyperbolic geometry is based on the hyperbola rather than the circle.  The sech is 
expressed mathematically as 
 

SECH(X) = 2 / ( EXP(X) + EXP(-X) ) 
 
 
The hyperbolic cosecant or csch is the reciprocal of the hyperbolic sine function and it is based on 
hyperbolic geometry.  Hyperbolic geometry is based on the hyperbola rather than the circle.  The csch is 
expressed mathematically as 
 

CSCH(X) = 2 / ( EXP(X) - EXP(-X) ) 
 
 
The hyperbolic cotangent or coth is the hyperbolic function of the cotangent trigonometric function 
and it is based on hyperbolic geometry.  Hyperbolic geometry is based on the hyperbola rather than the 
circle.  The coth is expressed mathematically as 
 

TANH(X) = EXP(-X) ) / ( EXP(X) - EXP(-X) ) * 2 + 1 
 
 
The inverse hyperbolic sine or arcsinh, denoted as sinh-1, is the inverse function of the hyperbolic sine 
trigonometric function.  It is used to find the hyperbolic angle whose hyperbolic sine value is a given 
number.  The arcsinh is expressed mathematically as 
 

ARCSINH(X) = LN( X + SQR( X2 + 1 ) ) 
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The inverse hyperbolic cosine or arccosh, denoted as cosh-1, is the inverse function of the hyperbolic 
cosine trigonometric function.  It is used to find the hyperbolic angle whose hyperbolic cosine value is 
a given number.  The arccosh is expressed mathematically as 
 

ARCCOSH(X) = LN( X + SQR( X2 - 1 ) ) 
 
 
The inverse hyperbolic tangent or arctanh, denoted as tanh-1, is the inverse function of the hyperbolic 
tangent trigonometric function.  It is used to find the hyperbolic angle whose hyperbolic tangent value 
is a given number.  The arctanh is expressed mathematically as 
 

ARCTANH(X) = LN( ( 1 + X ) / ( 1 - X ) ) / 2 
 
 
The inverse hyperbolic secant or arcsech, denoted as sech-1, is the inverse function of the hyperbolic 
secant trigonometric function.  It is used to find the hyperbolic angle whose hyperbolic secant value is 
a given number.  The arcsech is expressed mathematically as 
 

ARCSECH(X) = LN( SQR( 1 - X2 ) + 1 ) / X 
 
 
The inverse hyperbolic cosecant or arccsch, denoted as csch-1, is the inverse function of the hyperbolic 
cosecant trigonometric function.  It is used to find the hyperbolic angle whose hyperbolic cosecant value 
is a given number.  The arccsch is expressed mathematically as 
 

ARCCSCH(X) = LN( SGN(X) * SQR( 1 + X2 ) + 1 ) / X 
 
 
The inverse hyperbolic cotangent or arccoth, denoted as coth-1, is the inverse function of the hyperbolic 
cotangent trigonometric function.  It is used to find the hyperbolic angle whose hyperbolic cotangent 
value is a given number.  The arccoth is expressed mathematically as 
 

ARCCOTH(X) = LN( ( X + 1 ) / ( X - 1 ) ) / 2 
 
 
The expression A mod B refers to the modulo operation which calculates the remainder when A is divided 
by B.  This function could be incorporated into Applesoft as the Applesoft MOD statement.  Perhaps the 
unmodified Applesoft sine polynomials could be reinstalled into the modified Applesoft in order to provide 
the Applesoft space that would be required to calculate this function.  The modulo is expressed 
mathematically as 
 

MOD(A) = INT( ( A/B - INT( A/B ) ) * B + 0.5 ) * SGN( A/B ) 
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Testing Applesoft Floating-Point Routines 
 
The Call-A.P.P.L.E. magazine published the article Floating Point Arithmetic in Applesoft BASIC by James 
W. Thomas in July, 1985, and this article appeared on pages 15 to 18.  This article introduces the Standard 
Apple Numerics Environment or SANE as a result of efforts from the Apple Numerics Group.  SANE is 
utilized in Apple Works, MacPascal, MacBASIC, the Lisa Workshop, and in several other Macintosh 
languages and applications.  However, the purpose of this article is to bring attention to the problems and 
the issues that are found in Applesoft arithmetic which can be quantitatively identified.  This article did not 
mention nor did it infer whether or not any arithmetic that is found in Applesoft BASIC is utilized in the 
development of SANE.  That information would have been rather interesting to know.  Returning to the 
content of Mr. Thomas’s article, if I have been in anyway successful in eliminating any of the identified 
problems in Applesoft arithmetic, the examples from this article should easily prove my success. 
 
Integer numbers as large as 1,048,576 or 220 can be precisely expressed by an Applesoft floating-point 
number.  However, not all decimal numbers can be precisely expressed by this floating-point notation.  
Applesoft floating-point notation is limited by its 8-bit exponent and its 32-bit mantissa, and Applesoft 
notation cannot precisely express many decimal numbers.  Even IEEE floating-point double precision 
numbers cannot precisely express many decimal numbers.  Mr. Thomas provides a very simple test to show 
the weakness of all similar floating-point notations.  I have magnified the range of this test in order to also 
show the strengths that are inherent in Applesoft floating-point numbers as well. 
 
 
 

	

Figure 5.  Test 1 Applesoft Program 
 
 
 
The Applesoft program for Test 1 is shown in Figure 5.  Eleven fractional values are tested using 1000 
loops of successive addition and 1000 loops of successive subtraction using the DATA values that are shown 
in line 1000.  The first 1000 loops add the same value to a running sum and then the main routine prints 
that final sum on line 60.  The next 1000 loops begin with an integer of that final sum and it subtracts that 
same value and then the main routine prints the final value in line 70.  Both versions of Applesoft in an 
Apple //e display nearly the same problems when adding the same small fractional value repeatedly as 
shown in Figure 6 for the unmodified Applesoft and in Figure 7 for the modified Applesoft.  Applesoft 
appears to have no problems when repeatedly adding the values of 0.3, 0.5, or 0.6.  Why is that?  For 
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0.1, 0.2, 0.4, and 0.8 the mantissa is 0x4CCCCCCD, for 0.3 and 0.6 the mantissa is 0x1999999A, for 
0.5 the mantissa is 0x00000000, for 0.7 the mantissa is 0x33333333, and for 0.9 the mantissa is 
0x66666666.  Apparently, the addition and roundup of a mantissa value of 0x1999999A creates no 
summing issues in Applesoft.  The other mantissa values do cause summing issues for successive addition 
and roundup in Applesoft.  Only the successive subtraction of 0.5 and 1.0 is handled well in Applesoft.  
After every addition or subtraction, Applesoft must call COPYFAC in order to save the contents of the FAC 
floating-point register to memory so that its value can be displayed.  This call to COPYFAC requires a call to 
RNDUP and that call is unavoidable.  I have no doubt that if these addition and subtraction loops remained 
entirely within Applesoft, better results would be obtained where RNDUP is called only once.  The residual 
error is quite small and it shows that values to five or six places are precise in Applesoft. 
 
 
 

	

Figure 6.  Test 1 Unmodified Applesoft 
	

Figure 7.  Test 1 Modified Applesoft 
 
 
 
Non-commutative addition where intermediate operations may present different results to subsequent 
operations can occur depending on the positions of those operations that are determined by the formula 
evaluation routine.  In other words, the consequence of the formula evaluation routine may present different 
results when the variables of the formula are manipulated in a slightly different order.  For example, the 
formula A + BC should present the same result as BC + A.  Mr. Thomas correctly points out that in the 
unmodified Applesoft, BC in the first formula stays in the FAC floating-point register with its guard byte and 
BC in the second formula is rounded and saved as a temporary variable.  When A is added to BC, different 
results are presented to the user.  I wrote Test 2 so that it utilizes the LIST statement to automatically list 
the Applesoft program when the DOS RUN command is issued on the Apple Command Line.  Test 2 also 
prints the contents of each variable showing only what FPOUT is capable of printing even though variable 
A is equal to 7FC0000001 in memory in both Figure 8 and in Figure 9.  That lowly 32nd mantissa bit 
interferes in the addition of the second formula because of the inadequate utilization of guard bytes in the 
unmodified Applesoft.  Figure 9 shows off the redesigned LIST routine and the redesigned FPOUT routine 
in the modified Applesoft as well as its immunity to non-commutative addition.  LIST increases the number 
of characters that are displayed on a TEXT line.  FPOUT prefaces a fractional value with a 0 if scientific 
notation is not utilized.  Because the modified Applesoft utilizes guard bytes for every set of internal 
arithmetic calculations, it makes no difference whether A is added to BC or whether BC is added to A.  That 
lowly 32nd mantissa bit is managed with a 40-bit mantissa in either formula.  The results from Figure 9 
show that non-commutative addition errors have most likely been eliminated in the modified Applesoft. 
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Figure 8.  Test 2 Unmodified Applesoft 
	

Figure 9.  Test 2 Modified Applesoft 
 
 
 

	

Figure 10.  Test 3 Unmodified Applesoft 
	

Figure 11.  Test 3 Modified Applesoft 
 
 
 
Non-commutative multiplication where intermediate operations may present different results to subsequent 
operations can occur depending on the positions of those operations that are determined by the formula 
evaluation routine.  In other words, the consequence of the formula evaluation routine may present different 
results when the variables of the formula are manipulated in a slightly different order.  For example, the 
formula C + (A + B) * C - A should present the same result as C + C * (A + B) - A.  Mr. Thomas correctly 
points out that the remedy to evaluate these two formulas would involve nontrivial design decisions.  He 
points out that the guard bytes should be pushed onto the STACK, also.  I think he incorrectly believes that 
rounding the operands before their utilization would remedy the evaluation of these two formulas.  And, of 
course, we both concur that the addition, subtraction, and multiplication routines in Applesoft require 
modifications in how operands that have different sized significands are utilized.  I also wrote Test 3 so 
that it utilizes the LIST statement to automatically list the Applesoft program when the DOS RUN command 
is issued on the Apple Command Line.  Test 3 prints the contents of each variable where variable B is equal 
to 6000000000 in memory in both Figure 10 and in Figure 11.  Applesoft has difficulty when it is required 
to normalize variables for addition and for subtraction when the exponents of those variables differ by 0x20 
and more.  As shown in Figure 10, I find it a bit surprising that the first formula generates a remainder 
difference that is four times the value of the variable B.  The second formula generates a remainder 
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difference that is twice the value of the variable B in the unmodified Applesoft.  The modified Applesoft 
does utilize modifications to its addition, subtraction, and multiplication routines and these routines utilize 
guard bytes in all stages of their processing.  Guard bytes are also pushed and popped from the STACK in 
the modified Applesoft as well.  The results from Figure 11 show that non-commutative multiplication 
errors have most likely been eliminated in the modified Applesoft. 
 
 
 

	

Figure 12.  Test 4 Unmodified Applesoft 
	

Figure 13.  Test 4 Modified Applesoft 
 
 
 
Non-reflexive equality processing where intermediate operations may present different results to 
subsequent operations can occur and they are determined by the formula evaluation and comparator 
routines.  In other words, the consequence of the formula evaluation and comparator routines may present 
different results when variables are compared even without changing their order.  For example, the formula 
A op B should compare precisely to A op B.  Mr. Thomas states that the formula evaluator routine rounds 
and pushes one of the A op B results onto the stack and leaves the other A op B result in the FAC floating-
point register and unrounded before the results are compared.  If Mr. Thomas is referring to the FRMSTAK3 
routine in the unmodified Applesoft, the FAC floating-point register is first rounded by the RNDUP routine 
before the register is pushed onto the STACK.  Rather than call the RNDUP routine in the modified Applesoft, 
I push FACGUARD onto the STACK before I push the FAC floating-point mantissa onto the STACK.  Likewise, 
in the modified Applesoft, I pull ARGUARD off the STACK after I pull the ARG floating-point mantissa off the 
STACK in the NOTMATH4 routine.  The FAC floating-point register is then compared to the ARG floating-point 
register using FPCOMP which I have also modified in the modified Applesoft.  I have serious objections to 
entertaining the use of any rounded values in Applesoft as a means to fix the Applesoft compare algorithm 
as Mr. Thomas suggests.  I wrote Test 4 so that it utilizes the LIST statement to automatically list the 
Applesoft program when the DOS RUN command is issued on the Apple Command Line.  Test 4 prints the 
contents of each variable where variable B is equal to 687F800000 in memory in both Figure 12 and in 
Figure 13.  Applesoft has difficulty when it is required to normalize variables for addition and for 
subtraction when the exponents of two variables differ by 0x20 and more.  These two variables differ by 
0x17 so Applesoft should have no problems in adding these two variables, putting their sum onto the STACK, 
calculating their sum again, pulling the first sum off the STACK, and then comparing the two sums.  Without 
question, the mantissas of these two sums should precisely compare.  Figure 12 shows that the unmodified 
Applesoft has reached the wrong conclusion and that the mantissa of one sum is greater than the mantissa 
of the other sum.  Figure 13 shows that the modified Applesoft has reached the correct conclusion and that 
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the mantissa of one sum is equal to the mantissa of the other sum.  The results from Figure 13 show that 
non-reflexive equality processing errors have most likely been eliminated in the modified Applesoft 
utilizing far different techniques and more powerful modifications than what Mr. Thomas has suggested. 
 
 
 

	

Figure 14.  Test 5 Unmodified Applesoft 
	

Figure 15.  Test 5 Modified Applesoft 
 
 
The PROCEXP routine in Applesoft purposefully made all quotients positive when its exponent is found to 
be equal to -128.  This is not a software bug as Mr. Thomas seems to believe.  This was purposefully coded 
and I have no idea why it was permitted to stand.  Instead of storing zero into FACSIGN as the unmodified 
Applesoft does, I always store XORSIGN into FACSIGN in the modified Applesoft regardless whether the 
addition of #EXPBIAS to FACEXP is zero or not.  Test 5 is shown in Figure 14 for the unmodified Applesoft.  
And, indeed, as Mr. Thomas points out, the sign of a small quotient value is wrong.  The modified PROCEXP 
routine in the modified Applesoft properly handles the sign of the quotient in all cases as shown in Figure 
15.  The results from Figure 15 show that the sign of the small quotient error in Applesoft has most likely 
been eliminated in the modified Applesoft. 
 
 
 

	

Figure 16.  Test 6 Unmodified Applesoft 
	

Figure 17.  Test 6 Modified Applesoft 
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The Applesoft multiplication routine uses its full processing horsepower to shift a multiplicand a full eight 
bits when the multiplier byte is zero.  In certain numbers where the second and the third mantissa bytes 
are zero, the Applesoft multiplication routine calls the SHFTBYT1 routine on behalf of the third mantissa 
byte (which is zero) with the C-flag properly set.  The SHFTBYT1 routine exits properly and the routine 
is designed to clear the C-flag.  Now, when the Applesoft multiplication routine calls the SHFTBYT1 
routine on behalf of the second mantissa byte (which is zero), the C-flag is not properly set:  the C-flag 
is clear.  The bcs instruction at 0xE8F0 is designed as the exit for the Applesoft multiplication routine, the 
branch is not taken, and the multiplication routine enters processing that is not intended for this 
multiplication routine.  Hence, the multiplicand is unfortunately shifted one bit to the right.  This is truly a 
mistake on behalf of the Applesoft language developers.  This is a forgotten possibility that can happen 
when processing certain numbers.  The solution is to preface the call to the SHFTBYT1 routine with a sec 
instruction or to preface the SHFTBYT1 routine itself with a sec instruction.  I chose the second option and 
I inserted a sec instruction at 0xE8CE at the top of the SHFTBYT1 routine.  Only the Applesoft multiplication 
routine calls the SHFTBYT1 routine.  As shown in Figure 16 for Test 6, the unmodified Applesoft shifts the 
multiplicand one bit to the right when the formula B = 1*A is processed.  The variable C is saved properly 
to memory but the values of variables A, B, and C are not printed with their correct values.  As shown in 
Figure 17 for Test 6, the modified Applesoft does not shift the multiplicand erroneously when the formula 
B = 1*A is processed.  The variable C is saved properly to memory and the value of variables A, B, and C are 
printed with their correct values.  Figure 17 demonstrates that the binary to decimal conversion algorithm 
is working correctly whereas the binary to decimal conversion algorithm in Figure 16 is not working 
correctly.  I can fiercely state one more time, the results from Figure 17 show that non-commutative 
multiplication errors have most likely been eliminated in the modified Applesoft. 
 
Mr. Thomas does elaborate on the decimal to binary and the binary to decimal conversion routines that 
reside in Applesoft.  Surely, the GETINT decimal to binary conversion routine at 0xEC4A does its processing 
remarkably well.  There is no question that the unmodified Applesoft converts the value of C properly into 
memory.  My only complaint about the GETINT routine is that the Applesoft language developers inserted 
the ADD2FAC routine unnecessarily into the middle of the GETINT routine.  The FPOUT binary to decimal 
conversion routine at 0xED34 depends on the services of the key routines MULFAC10, DIVFAC10, and 
FPCOMP.  I have modified and fine-tuned all of these routines in the modified Applesoft.  The results of this 
concerted effort is on display in Figure 17.  No longer are the values of variables printed incorrectly.  Having 
implemented the use of guard bytes in all stages of floating-point arithmetic assists the binary to decimal 
conversion routine to produce a far more accurate representation of a binary number that resides in memory. 
 
The POWER ^ statement in Applesoft depends on INT, FPCOMP, LN, MULT, and EXP processing.  Both the LN 
and the EXP routines must each process a Taylor polynomial expansion.  Both of these polynomial 
expansions are supplied with modified polynomials over which I have no control except for the sine 
polynomials.  These polynomials have been precisely tuned in order to produce the nicely behaved output 
values that are shown for the variable A in Figure 18 for Test 7, or at least up to 1.0E-09.  Perhaps a DATA 
statement would have been a better design choice to use for this test rather than using the POWER statement.  
This test was designed by Mr. Thomas so I yield to his test design for the moment.  POWER statement 
processing tends to produce undervalued variables in the unmodified Applesoft as shown in Figure 18 and 
the modified Applesoft tends to produce overvalued variables as shown in Figure 19.  Both versions of 
Applesoft do not produce a ratio of 1.0 for angles that approach zero, or at least less than 0.001 radians 
as shown in both figures.  The results that are shown in Figures 20 and 21 for Test 7.1 insulate the values 
of A from the POWER statement so that a better comparison of the sine ratios can be easily observed.  These 
sine ratios in the two Applesoft versions are nearly identical which should be expected since the eleven 
theoretical sine polynomials that are used in the modified Applesoft yield virtually the same results as the 
six modified sine polynomials that are used in the unmodified Applesoft. 
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Figure 18.  Test 7 Unmodified Applesoft 
	

Figure 19.  Test 7 Modified Applesoft 
 
 
 

	

Figure 20.  Test 7.1 Unmodified Applesoft 
	

Figure 21.  Test 7.1 Modified Applesoft 
 
 
 

	

Figure 22.  Test 8 Unmodified Applesoft 
	

Figure 23.  Test 8 Modified Applesoft 
 
 



 
 

75 

Mr. Thomas conducted another series of sine calculations specifically for very large arguments.  These 
calculations are shown in Figures 22 and 23 for Test 8.  I cannot be sure what the point is for Test 8 except 
to show that for very large arguments, the sine functions will produce a value of zero.  In fact, the modified 
Applesoft produces a value of zero for an input argument that is not as large as the input argument in the 
unmodified Applesoft, that is, at 1.0E+08 rather than at 1.0E+09.  Mr. Thomas theorizes that the argument 
reduction algorithm that is utilized in sine processing is the actual culprit for that function being unable to 
obtain a valid quotient remainder that is obtained when the input argument is successively divided by 2*p.  
In its attempt to properly position the input argument in the correct quadrant may also contribute to sine 
processing being unable to process this very small quotient.  Mr. Sander-Cederlof suggests that the sine 
argument reduction algorithm can be replaced with far simpler ways in order to determine an input angle 
as a fraction of a full circle and fold the range of that angle into a quarter circle.  This suggestion infers that 
the utilization of a MOD function would be a far better choice in processing very large arguments for the 
sine function.  Mr. Thomas correctly points out that the flaws in the sine argument reduction algorithm 
are exacerbated in the cosine and in the tangent functions because those two functions depend entirely 
on the sine function.  In Applesoft cosine processing, an argument is processed as cos(x) = sin(x + 
p/2).  In Applesoft tangent processing, an argument is processed as tan(x) = sin(x) / cos(x).  And, 
the Applesoft tangent processing is even further flawed since tan(x) = sin(x) / sin(x + p/2).  In 
other words, Applesoft tangent processing requires two calls to the sine function.  Both the cosine and 
the tangent functions inherit the processing flaws that are native to the sine function. 
 
 
 

	

Figure 24.  Test 9 Unmodified Applesoft 
	

Figure 25.  Test 9 Modified Applesoft 
 
 
 
Another good test that shows off the behavior of the Applesoft tangent function for a range of arguments 
from small arguments to very small arguments is shown in Figures 24 and 25 for Test 9.  For a small input 
argument, the tangent function returns with the same value as the input argument.  Thus, when that value 
is divided by the input argument, a quotient of 1.0 should be obtained.  The quotients that are shown in 
Figures 24 and 25 for the unmodified Applesoft and for the modified Applesoft, respectively, are nearly 
identical, though they are not precisely equal to 1.0 in all cases. 
 
A very good way to test the Applesoft sine and cosine functions and their behavior together is to utilize 
a trigonometric identity that generates a known and easy to verify output.  One trigonometric identity is 
sin(x)^2 + cos(x)^2 = 1.  I have already established that the Applesoft POWER and EXP functions depend 
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on modified polynomials and that these functions do not provide optimal results for small input values.  It 
is not necessary to utilize the POWER function in Test 10.  One can simply multiply sin(x) times sin(x) 
to obtain sin(x)^2.  This is precisely what I do in Test 10 rather than what Mr. Thomas does in his version 
of this same test.  Anyone who has studied this document will come to the conclusion that it is better to 
avoid the Applesoft POWER and EXP functions if at all possible.  Even the multiply routine in the unmodified 
Applesoft is far more trustworthy over the Applesoft POWER and EXP functions as shown in Figure 26.  
However, the arithmetic routines in the modified Applesoft are obviously far more precise in calculating 
this particular trigonometric identity as shown in Figure 27.  The multiplication of the Applesoft sine and 
cosine functions and their addition is precisely 1.0 until extraordinarily large input values are utilized.  I 
believe that most scientists and engineers would restrict their utilization of such input values to those that 
might transcribe a circle no more than twice. 
 
 
 

	

Figure 26.  Test 10 Unmodified Applesoft 
	

Figure 27.  Test 10 Modified Applesoft 
 
 
 

	

Figure 28.  Test 11 Unmodified Applesoft 
	

Figure 29.  Test 11 Modified Applesoft 
 
 
 
There is another useful trigonometric identity that can be utilized in order to provide a means to expose 
problems in the Applesoft trigonometric functions and in the Applesoft arithmetic routines.  This 
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trigonometric identity is sin(2x) = 2 * sin(x) * cos(x).  Test 11 is designed to calculate and show the 
result from sin(2x) processing and calculate and show the result from 2 * sin(x) * cos(x) processing.  
Figure 28 shows some variation of the results for the unmodified Applesoft.  On the other hand, Figure 29 
shows far less, if any, variation of the results for the modified Applesoft throughout the entire numerical 
range that is tested.  This numerical range, again, is artificial and certainly far beyond that which is practical 
in any research or hardware analysis of reasonable functionality.  Perhaps Mr. Thomas might have 
subtracted these two results or divided these two results to more clearly visualize the degree of equalness 
for this trigonometric identity as computed by the respective Applesoft.  It is worth repeating that the 
modified Applesoft will provide excellent results for all trigonometric functions as long as the input variable 
is restricted in its utilization such that its value might transcribe a circle no more than twice. 
 
Mr. Thomas does a thorough review of all of the implications that the above tests have shown.  The 
Applesoft programmer has been failed by less accurate floating-point variables, the lack of guard bytes, the 
less than stellar binary to decimal conversions, the technical flaws in multiplication, a poorly designed 
argument reduction algorithm for the trigonometric functions, all of the excessive rounding, the stack 
pushes and pops, and the incompetence of the logarithmic and exponential functions.  The errors, the 
failures, and the bugs that are inherent in the unmodified Applesoft have now been exposed and they have 
all been corrected in the modified Applesoft within the space that is provided for Applesoft as well as the 
addition of new functionality and better functionality for the entire Applesoft statement repertoire. 
 
My only regret is not knowing how the modified polynomials are calculated for the logarithm, the 
exponential, the sine, and the arctangent funcyions.  That was genius. 
 
 
 

Installing Applesoft 
 
My journey through Applesoft has only been an intellectual exercise unless I can actually inject this 
Applesoft into a real Apple //e computer and use this Applesoft for something creative.  To use the modified 
Applesoft in an Apple //e computer, the Applesoft must be programmed into either a 128 Kb EPROM or 
two 64 Kb EPROMs depending on the model of the Apple //e.  The Lisa assembler creates four output files 
when Lisa assembles my source code for the CXROM, for Applesoft, and for the ROM Monitor.  The current 
version of my source code is ROM2E.SW16GCR.14.  The four output files that Lisa generates are C0ROM, 
D0ROM, E0ROM, and F0ROM.  Each of these four files are 4096 or 0x1000 bytes in size.  I wrote an EXEC file 
BLDROMS that I put on the Virtual ][ ROM 14 Build Volume and that EXEC file builds the single 
SW16GCR.CF.ROM binary file and it builds the SW16GCR.CD.ROM and the SW16GCF.EF.ROM pair of binary 
files.  These files can be used directly by the PROmGRAMER hardware in order to program the desired 
EPROMs for a particular Apple //e.  This is certainly the easiest and the most direct path in having the 
modified Applesoft internal to a real Apple //e computer.  The BLDROMS EXEC file is shown in Figure 30. 
 
I enjoy the freedom and the ease to develop 6502 assembly language software for an Apple //e computer 
using an Apple //e emulator on my Apple MacBook Pro computer.  The Apple //e emulator that I have 
always used and trusted is Virtual ][ which is written and copyright by Gerard Putter.  I have had a license 
to use Virtual ][ for many years and I am currently using Version 12.1.1.  Building a 256 Kb software ROM 
for Virtual ][ is a little difficult and it requires the assistance of a C language program that processes in a 
UNIX environment.  The 256 Kb software ROM is actually constructed by another EXEC file BLDV2ROM 
that I also put on the Virtual ][ ROM 14 Build Volume.  The BLDV2ROM EXEC file is shown in Figure 31. 
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BLOAD C0ROM,A$1000,D1 
BLOAD D0ROM,A$2000 
BSAVE SW16GCR.CD.ROM,A$1000,L$2000,D2,B 
BLOAD E0ROM,A$3000,D1 
BLOAD F0ROM,A$4002 
BSAVE SW16GCR.EF.ROM,A$3000,L$2000,D2,B 
BSAVE SW16GCR.CF.ROM,A$1000,L$4000,B 
 

Figure 30.  BLDROM EXEC File 
 
 
 

 
BLOAD ZEROPAGE,A$1000,D2 
BLOAD ZEROPAGE,A$1100 
BLOAD ZEROPAGE,A$1200 
BLOAD PAGE3,A$1300 
BLOAD ZEROPAGE,A$1400 
BLOAD ZEROPAGE,A$1500 
BLOAD PAGE6,A$1600 
BLOAD ZEROPAGE,A$1700 
BLOAD ZEROPAGE,A$1800 
BLOAD ZEROPAGE,A$1900 
BLOAD ZEROPAGE,A$1A00 
BLOAD ZEROPAGE,A$1B00 
BLOAD ZEROPAGE,A$1C00 
BLOAD ZEROPAGE,A$1D00 
BLOAD ZEROPAGE,A$1E00 
BLOAD ZEROPAGE,A$1F00 
BLOAD D0ROM,A$2000,D1 
BLOAD E0ROM,A$3000 
BLOAD F0ROM,A$4002 
BLOAD C0ROM,A$5000 
BLOAD D0ROM,A$6000 
BLOAD E0ROM,A$7000 
BLOAD F0ROM,A$8002 
BSAVE APPLE2E.SW16GCR.14.ROM,A$1000,L$8000,D2 
 

Figure 31.  BLDV2ROM EXEC File 
 
 
PAGE3 is a binary file and this file contains 256 bytes of 6502 instructions that reside at 0xC300:C3FF in 
the Apple //e.  PAGE6 is also a binary file and this file contains 256 bytes of 6502 instructions that reside at 
0xC600:C6FF in the Apple //e.  ZEROPAGE is a binary file that contains 256 bytes of zero.  I do not believe 
that the HELP pages for Virtual ][ specifies the layout nor the precise content of a Virtual ][ software ROM 
file for the emulation of an Apple //e.  I believe that I constructed a Virtual ][ software ROM file simply by 
inspecting the content of various software ROM files that were provided with earlier versions of the Virtual 
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][ application many years ago.  The BLDV2ROM EXEC file constructs a Virtual ][ software ROM file for the 
emulation of an Apple //e and it uses all of the components that are shown in Figure 31.  The BLDV2ROM 
EXEC file generates the APPLE2E.SW16GCR.14.ROM file in the Virtual ][ ROM 14 Build Volume.  The 
APPLE2E.SW16GCR.14.ROM file must be copied from the Virtual ][ ROM 14 Build Volume and into the 
file system of the Apple MacBook Pro.  Once this software ROM file is in the Apple MacBook Pro file 
system, it can be copied to /Users/<user>/Library/"Application Support"/"Virtual ]["/ROM 
where <user> is the Apple MacBook Pro user account name.  Apple MacBook Pro users may find that 
their Library directory is hidden, so that volume must be unhidden in order to utilize the cleanup 
command file that is found in the SW16GCR.14.20250412 directory.   
 
 
 

 
xterm -geometry 116x32+5+5 -fa Monaco -fs 10 & 
xterm -geometry 104x32+950+5 -fa Monaco -fs 10 & 
xterm -geometry 116x20+5+610 -fa Monaco -fs 10 & 
xterm -geometry 104x20+950+610 -fa Monaco -fs 10 & 
 

Figure 32.  SETUP Command File 
 
 
 
I prefer to use the XQuartz environment when I develop C language programs on my Apple MacBook Pro 
computer.  The first command that I issue in the XQuartz window is the csh command in order to begin 
the C shell or the tcsh environment in that window.  I am sure individuals have their own preference of 
the shell that they prefer to use, and that is just fine with me.  However, I have been using the C shell for 
nearly my entire programming career and it is the shell that I prefer and it is the shell that works best with 
my C language software products.  I encourage everyone to become acquainted with the C shell only for 
the purpose of exploring my unique software products.  You should certainly return to the shell of your 
choice.  Perhaps, you could even transpose my software products into your favorite shell environment.  The 
C shell environment allows me to process an alius file in order to have various aliases available to me 
while in this window environment.  The next command that I issue is the setup command in order to create 
and have available to me several xterm windows.  Figure 32 shows an example setup command file.  In 
any of these xterm windows, cd to a convenient location where the contents of the ModSoft.tar file can 
be extracted.  These contents include the appleV2code directory, the My Applesoft Journey.pdf file, and 
the ROM2E.14 directory.  In order to extract the contents of the ModSoft.tar file, the tar xvf 
ModSoft.tar command can be used.  The appleV2code directory contains all of the tools that are 
necessary in order to read the 2eRoms/SW16GCR.14.20250412/ROM2E.SW16GCR.14.Build.dsk file 
that resides in the appleV2code directory.  After a successful assembly and build of the 
ROM2E.SW16GCR.14.Image disk image from the ROM2E.SW16GCR.14.Source disk image is made by 
Lisa, the EXEC files on the ROM2E.SW16GCR.14.Build.dsk disk image can be processed and that disk 
image file can be copied into the appleV2code/2eRoms/SW16GCR.14.20250412 directory.  The 
cleanup command file that is found in the SW16GCR.14.20250412 directory deletes all of the unnecessary 
files that are copied from the Virtual ][ ROM 14 Build Volume.  It also copies the 
APPLE2E.SW16GCR.14.ROM file to the Virtual ][ ROM directory so that the Virtual ][ application can utilize 
that software ROM file in order to initialize the ROM environment of the emulated Apple //e. 
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The C language programming environment that is available on the Apple MacBook Pro is extensive.  
However, the Apple MacBook Pro programming environment is somewhat different than what is typically 
found on a standard UNIX platform.  I have designed the menu command file that is found in the 
appleV2code directory to initialize the necessary environment variables so that menu will correctly execute 
within the programming environments with which I am acquainted.  Darwin is one of those environments 
that menu knows about.  In order to modify any of the source code files that are found in the source directory 
or to add new source code files to the source directory, it is important to first execute the command 
run.config.  Now, the environment variable HOME_PATH is correctly initialized and the makefile in the 
source directory and the makefile in the binary directory will operate correctly.  Of course, if any source 
code files are added to the source directory or removed from the source directory, the makefile in the 
source directory and the makefile in the binary directory will need to be modified in order to generate 
the object code files in the source directory and the executable files in the binary directory.  If any source 
code file is modified in the source directory, the makefile in the source directory needs to execute and 
the makefile in the binary directory needs to execute.  If you wish to begin with a fresh start and compile 
and link all of the source code files, simply enter the command make clean and then enter the command 
make first in the source directory and then make in the binary directory.  Hopefully, no compile or link 
errors should occur. 
 
The final step in utilizing a new software ROM in Virtual ][ on an Apple MacBook Pro computer is to have 
Virtual ][ correctly load that software ROM.  Start the Virtual ][ application and press Reset in the upper 
right-hand corner.  Select the Machine/Configure tab.  On the left-hand side, open the Components 
selection and select ROM memory.  On the right-hand side, press the Select… button.  From the MacBook 
Pro file system display window, select the desired software ROM.  Changing the software ROM always 
requires restarting the virtual machine. 
 
 
 
 
  



 
 

81 

Appendix A 
 
 
 
The following table lists all of the page-zero variables that are used by Applesoft, by the ROM Monitor, 
and by DOS 4.5.08H. 
 
 

Address Applesoft Other Monitor DOS 4.5.08 Description 
00 GOWARM R0L LOC0  00:03, JMP RESTART 
01 LOC1 R0H LOC1   
02 LOC2     
03 GOSTROUT    03:05, JMP STROUT 
04 :     
05 :     
06     Free 
07     Free 
08     Free 
09     Free 
0A GOUSR    0A:0C, JMP <USER address> 
0B :     
0C :     
0D BYTVALUE CHARAC   CHARAC 
0E ENDCHR     
0F EOLPTR NUMDIM   TOKNCNTR 
10 DIMFLG    Dimension flag 
11 VALTY8P     
12     Free 
13 DATAFLG GARFLG    
14 SUBFLG    Subscript flag 
15 INPUTFLG     
16 CPRMASK TOGLFLG    
17     Free 
18  R12L   Free (SWEET16 STACK Pointer) 
19  R12H   Free 
1A SHAPE    1A:1B 
1B :     
1C COLBITS R14L    
1D COLCOUNT R14H    
1E  R15L   Free 
1F  R15H   Free 
20   WNDLFT  Left window column 
21   WNDWDTH  Window width 
22   WNDTOP  Top window line 
23   WNDBTM  Bottom window line 
24   CH  Horizontal cursor position 
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25   CV  Vertical cursor position 
26  TEMPZ GBASL BUFRADRZ Graphic plot base address 
27  TEMP2Z GBASH :  
28   BASL BASEZ Window base address 
29   BASH :  
2A  ASPTRSAV BAS2L CURTRKZ Scrolling base address 
2B   BAS2H SLOT16Z  
2C  LMNEM H2 DRVFLAG ADRDATMK, ADRFIELD 
2D  RMNEM V2 SECFNDZ  
2E  FORMAT MASK TRKFNDZ CHKSUM 
2F  LASTIN LENGTH VOLFNDZ SIGN 
30 COLOR  HMASK  HIRES mask, LORES color 
31   MODE  Command processing 
32   INVFLG  Video format control 
33   PROMPT  Prompt character 
34   YSAV PHASE Command processing 
35  SYNCNT YSAV1 PAGECNT SAVXYREG, CMDINDXZ 
36   CSWL  Character output 
37   CSWH   
38   KSWL  Character input 
39   KSWH   
3A   PCL  Program counter 
3B   PCH   
3C  MOTORTIM A1L ROMTEMPZ Pointer #1 
3D   A1H ROMSECTR  
3E  ODDBITSZ A2L BUFADR2Z Pointer #2 
3F   A2H SECTORZ  
40  ROMDATA A3L TRACKZ Pointer #3; FILEBUFZ 40:41 
41  ROMTRACK A3H VOLUMEZ  
42   A4L BUFADRZ Pointer #4; 42:43 
43   A4H   
44 MACSTAT A5L OPRND DIRINDX General value 
45 T2GUARD  AREG  A-register value 
46   XREG  X-register value 
47   YREG  Y-register value 
48   PREG  P-register value 
49   SPNT  STACK pointer value 
4A    IOBADR 4A:4B 
4B    :  
4C    DOSPTR 4C:4D 
4D    :  
4E RNDL    Random number 
4F RNDH     
50 LINNUM  ACL LINNUM 50:51 
51 :  ACH   
52 TEMPPT    Temporary string index 
53 LASTPT    53:54, Last string pointer 
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54 :     
55 TEMPST    55:5D, String scratch name/len 
56 :     
57 :     
58 :     
59 :     
5A :   DOSTEMP1  
5B :   DOSTEMP2  
5C :   DOSBUFR 5C:5D 
5D :   :  
5E INDEX    5E:5F, Move string stack 
5F :     
60 DEST    60:61 
61 OFFSET    Trick assembler in SHFTBYT1, SHFTBYT2 
62 MULMANT    62:65, Multiply/Divide result 
63 :     
64 :     
65 :     
66 MULGUARD     
67 PRGTAB    67:68, Program start 
68 :     
69 VARTAB    69:6A, Simple variables 
6A :     
6B ARYTAB    6B:6C, Array variables 
6C :     
6D STREND    6D:6E, Array end 
6E :     
6F FRETOP    6F:70, String variables 
70 :     
71 FRESPC    71:72, String variables 
72 :     
73 MEMSIZE   HIMEM 73:74, Top of memory 
74 :     
75 CURLIN    75:76, Line being interpreted 
76 :   ASRUN RUN flag 
77 OLDLIN    77:78, Last interpreted line 
78 :     
79 TEXTPTR    79:7A, Current TEXT pointer 
7A :     
7B DATLIN    7B:7C, Line containing data 
7C :     
7D DATPTR    7D:7E, Absolute data location 
7E :     
7F SRCPTR    7F:80, Current input source 
80 :     
81 VARNAM    81:82, Last variable’s name 
82 :     
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83 VARPTR    83:84, Last variable’s value 
84 :     
85 FORPTR    85:86, General pointer 
86 :     
87 TXPTRSAV LASTOP   87:88 
88 :     
89 CPRTYPE     
8A FUNCNAM TEMP3   8A:8B; 8A:8E, FP Register #3 
8B : :    
8C DSCPTR :   8C:8D 
8D : :    
8E  :    
8F  T3GUARD   T3 guard byte 
90 JMPADRS    GETS, JMP <address> 
91 RTNADR     
92 ARGGUARD    ARG guard byte 
93  TEMP1   93:97, FP Register #1 
94 ARYPNT :   94:95, HIGHDS, LEN, Block trans 
95 PROCESS :   (GARBAG) 
96 HIGHTR :   96:97, Block transfer 
97 : :    
98  TEMP2   98:9C, FP Register #2 
99 COUNTER :   (FPOUT) 
9A EXPCOUNT :   (FPOUT), (GETINT) 
9B LOWTR :   9B:9C, DPFLAG (GETINT) 
9C EXPSIGN :   (GETINT) 
9D DSCTMP    9D:9F, FACEXP, FAC exponent 
9E FACMANT    9E:A1, FAC mantissa 
9F :     
A0 : VARPTR   A0:A1, Variable address pointer 
A1 : :    
A2 FACSIGN    FAC sign bit 
A3 COEFNUM MINUSLOC    
A4 EXTSIGN    SIGNEXT, Additional sign bit 
A5 ARGEXP    ARG exponent 
A6 ARGMANT    A6:A9, ARG mantissa 
A7 :     
A8 :     
A9 :     
AA ARGSIGN    ARG sign bit 
AB XORSIGN STRING1   ARG^FAC sign bit, AB:AC 
AC FACGUARD :   FAC guard byte 
AD COEFPTR STRING2   AD:AE, SAVY (FPOUT) 
AE  :    
AF PRGEND    AF:B0, Program end 
B0 :     
B1 CHRGET    B1:C8, Get next character 
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B2 :     
B3 :     
B4 :     
B5 :     
B6 :     
B7 CHRGOT    Get current character 
B8 TXTPTR    B8:B9, Current character pointer 
B9 :     
BA :     
BB :     
BC :     
BD :     
BE :     
BF :     
C0 :     
C1 :     
C2 :     
C3 :     
C4 :     
C5 :     
C6 :     
C7 :     
C8 :     
C9 IRAND    C9:CC, Random number seed 
CA :     
CB :     
CC :     
CD SIGNFLG SPCLFLAG   (TAN); (GARBAG) 
CE     Free 
CF     Free 
D0 HRXDELTA SHPVAL   DO:D1 HIRES pointer 
D1 : ROTQVAL   ROTQVAL 
D2 HRYDELTA ROTHVAL   ROTHVAL 
D3 HRFLAG ROTVVAL   D3:D4, ROTVVAL 
D4 HRWORK ROTHSUM   ROTHSUM 
D5 HRYEND ROTVSUM   ROTVSUM 
D6 RUNFLAG   PROTECT Used for RUN command 
D7  SHPOLD  SUBCODEZ SUBCODE page-zero value 
D8 ERRFLG   ASONERR ONERR flag 
D9    RKEYWORD  
DA ERRLIN    DA:DB, Line containing error 
DB :     
DC ERRPOS    DC:DD, TEXTPTR save for HNDLERR 
DD :     
DE ERRNUM    Error number or code 
DF ERRSTK    STACK pointer before error 
E0 HRXCOOR    E0:E1, HIRES X-coordinate 
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E1 :     
E2 HRYCOOR    HIRES Y-coordinate 
E3     Free 
E4 HRCOLOR    HIRES color byte 
E5 HRHORZ    HIRES horizontal byte index 
E6 HRPAG    HIRES active page (0x20 or 0x40) 
E7 HRSCALE    HIRES scale factor 
E8 HRSHPTBL    E8:E9, HIRES Shape Table address 
E9 :     
EA HRCOLCNT    HIRES collision counter 
EB     Free 
EC     Free 
ED     Free 
EE     Free 
EF     Free 
F0 FIRST    LORES plot destination 
F1 SPEEDBYT    Display speed control, 0x00:FF 
F2 TRACEFLG     
F3 FLASHBYT    Output character control mask 
F4 TXTPTRSV    F4:F5, ONERR TEXT pointer save 
F5 :     
F6 CURLINSV    F6:F7, ONERR line pointer save 
F7 :     
F8 REMSTK     
F9 HRROT    HIRES shape rotation factor 
FA     Free 
FB     Free 
FC     Free 
FD     Free 
FE     Free 
FF     Free 

Table A.1.  Page-Zero Definitions 
 
  



 
 

87 

Appendix B 
 
 
 
The following table lists all of the Applesoft statements, their token number, and the location in Applesoft 
where that statement is processed.   
 
 

Statement Token Address Description 
END 0x80 0xD870 See 0xD000, adr BEND-1; start of BASIC statements 
FOR 0x81 0xD766 See 0xD002, adr BFOR-1 
NEXT 0x82 0xDCF9 See 0xD004, adr BNEXT-1 
DATA 0x83 0xD995 See 0xD006, adr BDATA-1 
INPUT 0x84 0xDBB2 See 0xD008, adr BINPUT-1 
DEL 0x85 0xF331 See 0xD00A, adr BDEL-1 
DIM 0x86 0xDFD9 See 0xD00C, adr BDIM-1 
READ 0x87 0xDBE2 See 0xD00E, adr BREAD-1 
GR 0x88 0xF390 See 0xD010, adr BGR-1 
TEXT 0x89 0xF399 See 0xD012, adr BTEXT-1 
PR# 0x8A 0xF1E5 See 0xD014, adr BPR-1 
IN# 0x8B 0xF1DE See 0xD016, adr BIN-1 
CALL 0x8C 0xF1D5 See 0xD018, adr BCALL-1 
PLOT 0x8D 0xF225 See 0xD01A, adr BCALL-1 
HLIN 0x8E 0xF232 See 0xD01C, adr BHLIN-1 
VLIN 0x8F 0xF241 See 0xD01E, adr BVLIN-1 
HGR2 0x90 0xF3D8 See 0xD020, adr BHGR2-1 
HGR 0x91 0xF3E2 See 0xD022, adr BHGR-1 

HCOLOR= 0x92 0xF6E9 See 0xD024, adr HCOLOR-1 
HPLOT 0x93 0xF6FE See 0xD026, adr BHPLOT-1 
DRAW 0x94 0xF769 See 0xD028, adr BDRAW-1 
XDRAW 0x95 0xF76F See 0xD02A, adr BXDRAW-1 
HTAB 0x96 0xF7E7 See 0xD02C, adr BHTAB-1 
HOME 0x97 0xFC58 See 0xD02E, adr HOME-1 
ROT= 0x98 0xF721 See 0xD030, adr BROT-1 
SCALE= 0x99 0xF727 See 0xD032, adr BSCALE-1 
SHLOAD 0x9A 0xFF58 See 0xD034, adr IORTS-1; command removed 
TRACE 0x9B 0xF26D See 0xD036, adr BTRACE-1 
NOTRACE 0x9C 0xF26F See 0xD038, adr BNOTRACE-1 
NORMAL 0x9D 0xF273 See 0xD03A, adr BNORMAL-1 
INVERSE 0x9E 0xF277 See 0xD03C, adr BINVERSE-1 
FLASH 0x9F 

A 
 

0xF280 See 0xD03E, adr BFLASH-1 
COLOR= 0xA0 0xF24F See 0xD040, adr BCOLOR-1 
POP 0xA1 0xD96B See 0xD042, adr BPOP-1 

 VTAB 0xA2 0xF256 See 0xD044, adr BVTAB-1 
HIMEM: 0xA3 0xF286 See 0xD046, adr BHIMEM-1 
LOMEM: 0xA4 0xF2A6 See 0xD048, adr BLOMEM-1 



 
 

88 

ONERR 0xA5 0xF2CB See 0xD04A, adr BONERR-1 
RESUME 0xA6 0xF318 See 0xD04C, adr BRESUME-1 
RECALL 0xA7 0xFF58 See 0xD04E, adr IORTS-1; command removed 
STORE 0xA8 0xFF58 See 0xD050, adr IORTS-1; command removed 
SPEED= 0xA9 0xF262 See 0xD052, adr BSPEED-1 
LET 0xAA 0xDA46 

 
See 0xD054, adr BLET-1 

GOTO 0xAB 0xD93E See 0xD056, adr BGOTO-1 
RUN 0xAC 0xD912 See 0xD058, adr BRUN-1 
IF 0xAD 0xD9C9 See 0xD05A, adr BIF-1 

RESTORE 0xAE 0xD849 See 0xD05C, adr BRESTORE-1 
& 0xAF 0x03F5 See 0xD05E, adr USRAHAND-1; connected to USRAHAND 

handler GOSUB 0xB0 0xD921 See 0xD060, adr BGOSUB-1 
RETURN 0xB1 0xD96B See 0xD062, adr BRETURN-1 
REM 0xB2 0xD9DC See 0xD064, adr BREM-1 
STOP 0xB3 0xD86E See 0xD066, adr BSTOP-1 
ON 0xB4 0xD9EC See 0xD068, adr BON-1 
WAIT 0xB5 0xE784 See 0xD06A, adr BWAIT-1 
LOAD 0xB6 0xD8DC See 0xD06C, adr BLOAD-1 
SAVE 0xB7 0xFF58 See 0xD06E, adr IORTS-1; command removed 
DEF 0xB8 0xE313 See 0xD070, adr BDEF-1 
POKE 0xB9 0xE77B See 0xD072, adr BPOKE-1 
PRINT 0xBA 0xDAD5 See 0xD074, adr BPRINT-1 
CONT 0xBB 0xD896 

0xD6A5 
 
 
 
 
 
 
 
 

See 0xD076, adr BCONT-1 
LIST 0xBC 0xD6A5 See 0xD078, adr BLIST-1 
CLEAR 0xBD 0xD66A See 0xD07A, adr BCLEAR-1 
GET 0xBE 0xDBA0 See 0xD07C, adr BGET-1 
NEW 0xBF 0xD649 See 0xD07E, adr BNEW-1 
TAB( 0xC0  TK.TAB; referenced directly 
TO 0xC1  TK.TO; referenced directly 
FN 0xC2  TK.FN; referenced directly 
SPC( 0xC3  TK.SPC; referenced directly 
THEN 0xC4  TK.THEN; referenced directly 
AT 0xC5  TK.AT; referenced directly 
NOT 0xC6  TK.NOT; referenced directly 
STEP 0xC7  TK.STEP; referenced directly 
+ 0xC8 0xE7C1 TK.PLUS, OPLUS; TAG = 0x79; referenced directly 
- 0xC9 0xE7AA TK.MINUS, OMINUS; TAG = 0x79; referenced directly 
* 0xCA 0xE982 OMULT; TAG = 0x7B; used directly 
/ 0xCB 0xEA69 ODIVIDE; TAB = 0x7B; used directly 
^ 0xCC 0xEE97 OPOWER; TAG = 0x7D; used directly 
AND 0xCD 0xDF55 OAND; TAG = 0x50; used directly 
OR 0xCE 0xDF4F OOR; TAG = 0x46; used directly 
> 0xCF 0xEED0 TK.GRTR; TAG = 0x7F; referenced directly 
= 0xD0 0xDE9B TK.EQUAL; TAG = 0x7F; referenced directly 
< 0xD1 0xDF65 REL; TAG = 0x64; used directly 
SGN 0xD2 0xEB90 See 0xD080, adr FSGN; start of FUNCTION1 statements 
INT 0xD3 0xEC23 See 0xD082, adr FINT 
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ABS 0xD4 0xEBAF See 0xD084, adr FABS 
USR 0xD5 0x000A See 0xD086, adr GOUSR 
FRE 0xD6 0xE2DE See 0xD088, adr FFRE 
SCRN( 0xD7 0xDEF9 See 0xD08A, adr FSCREEN 
PDL 0xD8 0xDFCD See 0xD08C, adr FPDL 
POS 0xD9 0xE2FF See 0xD08E, adr FPOS 
SQR 0xDA 0xEE8D See 0xD090, adr FSQR 
RND 0xDB 0xEFAE See 0xD092, adr FRND 
LOG 0xDC 0xEF3E See 0xD094, adr FLOG 
EXP 0xDD 0xEF09 See 0xD096, adr FEXP 
COS 0xDE 0xEFEA See 0xD098, adr FCOS 
SIN 0xDF 0xEFF1 See 0xD09A, adr FSIN 
TAN 0xE0 0xF03A See 0xD09C, adr FTAN 
ATN 0xE1 0xF09E See 0xD09E, adr FATAN 
PEEK 0xE2 0xE764 See 0xD0A0, adr FPEEK 
LEN 0xE3 0xE6D6 See 0xD0A2, adr FLEN 
STR$ 0xE4 0xE3C5 See 0xD0A4, adr FSTR 
VAL 0xE5 0xE707 See 0xD0A6, adr FVAL 
ASC 0xE6 0xE6E5 See 0xD0A8, adr FASC 
CHR$ 0xE7 0xE646 See 0xD0AA, adr FCHR 
LEFT$ 0xE8 0xE65A See 0xD0AC, adr FLEFT; start of FUNCTION2 statements 
RIGHT$ 0xE9 0xE686 See 0xD0AE, adr FRIGHT 
MID$ 0xEA 0xE691 See 0xD0B0, adr FMID 

 PI 0xEB 0xEF48 See 0xD0B2, adr FPI; a BASIC statement 
LN 0xEC 0xE941 See 0xD0B4, adr FLN; a FUNCTION1 statement 

Table B.1.  Modified Applesoft Statements 
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Appendix C 
 
 
 
The following table lists all of the internal Applesoft entry points for the unmodified version of Applesoft 
under Old Addr and whether these entry points are the same or different in the modified version of 
Applesoft under New Addr.  If the entry point addresses are different, the Cng Flg column is checked. 
 
 

Cng Flg Old Addr New Addr Name Description 
 - 0xC600 PROCVAR Cornelis Bongers Garbage Collection Routine 
 - 0xC64E PROCSPCL Cornelis Bongers Garbage Collection Routine 
 - 0xC670 SW16 Sweet 16 Metaprocessor, revised original 
 - 0xC7FF SW16 End of revised Sweet 16 Metaprocessor 
 - 0xCA71 OPTBLC 65C02 MNEML/MNEMR remapping 
 - 0xCA7D OPTBLL 65C02 MNEML/MNEMR remapping 
 0xD000 0xD000 BASADDR BASIC statements addresses = #ADDR/2 + 0x80 
 0xD080 0xD080 FN1ADDR FUNCTION statements addr = #ADDR/2 + 0x92 
 - 0xD0B2 FS3LN LN routine address, statement number = 0xEB 
 - 0xD0B4 FS3PI PI routine address, statement number = 0xEC 
ü 0xD0B2 0xD0B6 TAGADDR OPERATOR statements addr 
ü 0xD0D0 0xD0D4 BASNAME Statement names in DCI format 
ü 0xD260 0xD25B MESGS Error messages in mixed case in DCI format 
ü 0xD365 0xD362 GTFORPNT Used by FOR/NEXT, accelerated 
 0xD393 0xD393 BLTU Block transfer utility 
 0xD3D6 0xD3D6 CKSTKSIZ Check STACK size 
 0xD3E3 0xD3E3 CKSTRSIZ Check memory size between arrays and strings 
 0xD410 0xD410 OM.ERR Out of Memory error entry 
 0xD412 0xD412 PRTERR Print selected error message 
 0xD431 0xD431 PRLINUM Print string at (A/Y) using INDEX; modified 
 0xD43C 0xD43C RESTART Default DOS restart WARMADR entry ASROMWRM 
 0xD4F2 0xD4F2 ASENTER Default DOS reset RESETADR entry ASROMRST 
 0xD52C 0xD52C INLIN Read INPUT line, clear all MSBs; accelerated 
ü 0xD553 - INCHR Removed INCHR as unnecessary 
 0xD559 0xD559 PARSINPT Parse and tokenize the INPUT line 
 0xD56C 0xD56C PARSE Get next input character 
 0xD61A 0xD61A FNDLIN Search for line number in (LINNUM) 
 0xD649 0xD649 BNEW Implement the NEW statement 
 0xD64B 0xD64B SCRTCH Initialize for a new program environment 
 0xD665 0xD665 SETPTRS Default DOS RUN/CHAIN entry ASROMCLR 
 0xD66A 0xD66A BCLEAR Implement the CLEAR statement 
 0xD66C 0xD66C CLEARC Clear string area 
 0xD683 0xD683 STKINIT Start STACK at 0xF8 
 0xD697 0xD697 STXTPTR Initialize TXTPTR to program beginning 
 0xD6A5 0xD6A5 BLIST Implement the LIST statement 
ü 0xD72C 0xD758 GETCHR Get next character using (DSCTMP) 
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 0xD766 0xD766 BFOR Implement the FOR/NEXT/STEP statements 
 0xD7AF 0xD7AF STEP STEP phrase in FOR statement 
 0xD7D2 0xD7D2 NEWSTT Default DOS RUN/CHAIN entry ASROMNEW 
 0xD805 0xD805 DOTRACE Enable or disable program tracing 
 0xD828 0xD828 DOSTAMT Execute a statement; BASADDR or FN1ADDR 
 0xD849 0xD849 BRESTORE Implement the RESTORE statement 
 0xD853 0xD853 SETDAPTR Set DATPTR to (A/Y) 
 0xD858 0xD858 ISCNTLC Handle control-C; accelerated 
 0xD865 0xD865 ASROMERR Default DOS error ERRORADR; accelerated 
 0xD86E 0xD86E BSTOP Implement the STOP statement 
 0xD870 0xD870 BEND Implement the END statement 
 0xD896 0xD896 BCONT Implement the CONT statement 
ü 0xD8B0 - SAVE Removed this statement 
ü - 0xD8B0 DOHANDLR Jump to HANDLERR 
ü 0xD9C5 0xD8B3 PULL3A Issue 3 pla instructions 
ü - 0xD8BB RDBYTE Used by CXREAD to read audio waveform 
 0xD8C9 0xD8C9 BLOAD Implement the LOAD statement 
ü - 0xD8FF RD2BIT Read two audio waveform transitions 
ü - 0xD902 RDBIT Read one audio waveform transition 
 0xD912 0xD912 BRUN Implement the RUN statement 
 0xD921 0xD921 BGOSUB Implement the GOSUB statement 
 0xD93E 0xD93E BGOTO Implement the GOTO statement 
 0xD955 0xD955 ASROMSET Default DOS RUN/CHAIN LINNUM initialization 
 0xD96B 0xD96B BPOP Implement the POP statement; mod 
 0xD96B 0xD96B BRETURN Implement the RETURN statement; mod 
 0xD97C 0xD97C US.ERR Undefined Statement error entry 
 0xD995 0xD995 BDATA Implement the DATA statement 
 0xD9A3 0xD9A3 DATSCAN Scan ahead to next “:” or End of Line (EOL) 
 0xD9C9 0xD9C9 BIF Implement the IF statement 
 0xD9DC 0xD9DC BREM Implement the REM statement 
 0xD9EC 0xD9EC BON Implement the ON statement 
 0xDA0C 0xDA0C LINGET Convert line number; repaired 
 0xDA46 0xDA46 BLET Implement LET statement 
 0xDA7B 0xDA7B PUTSTR Install string descriptor address 
 0xDAB7 0xDAB7 COPYSTR Copy string into Character String Pool 
 0xDACF 0xDACF PRSTRING Print string and get last character 
 0xDAD5 0xDAD5 BPRINT Implement the PRINT statement; accelerated 
 - 0xDB32 UNARY2 Complete UNARY processing 
ü - 0xDB38 LINEOUT Print number 
ü 0xDB3A 0xDB3B STROUT Print string at (A/Y) 
ü 0xDB3D 0xDB3E STRPRT Print string at (INDEX); accelerated 
ü 0xDAFB 0xDB50 PRTCR Print return character; repaired 
ü 0xDB57 0xDB53 OUTSPC Print space character 
ü 0xDB5A 0xDB56 OUTPROMT Print prompt character ‘>’ and not ‘?’ 
ü 0xDB5C 0xDB58 OUTCHR Print character 
ü 0xDB71 0xDB6F INPUTERR Also, READERR, ERRLINN, INPERR, RESPERR; mod 
ü 0xDB7B 0xDB79 READERR Gets the data location, not the data 
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ü 0xDB7F 0xDB7D ERRLINN Save data location 
ü 0xDEC9 0xDB81 SY.ERR3 Syntax error entry 
 0xDB86 0xDB86 INPERR Pull data from the STACK 
 0xDB87 0xDB87 RESPERR Checks ONERR flag and handles both states 
 0xDBA0 0xDBA0 BGET Implement the GET statement 
 0xDBB2 0xDBB2 BINPUT Implement the INPUT statement; accelerated 
 0xDBDC 0xDBDC HEXTIN Print PROMPT and input line 
 0xDBE2 0xDBE2 BREAD Implement the READ statement 
 0xDBEB 0xDBEB INPTLIST Process input list 
 0xDBF1 0xDBF1 INPTITEM Process input item 
 0xDC2B 0xDC2B INSTART Input the string or numeric data 
 0xDC99 0xDC99 INPTFLG Select INPUT or READ 
 0xDCA0 0xDCA0 FINDATA Locate TEXT data, colon, or End of Line 
ü 0xDCC6 0xDCC7 INPTDONE No more data requested 
 0xDCDF 0xDCDF MESG21 Message ‘>Extra Ignored’, 0x0D 

D  0xDCEF 0xDCEF MESG22 Message ‘>Reenter’, 0x0D 
 0xDCF9 0xDCF9 BNEXT Implement the NEXT statement 
ü - 0xDD4D FPCOMPT3 Initialize X-reg with T3GUARD for FPCOMP 
ü 0xDD67 0xDD64 FRMNUM Evaluate expression 
ü 0xDD6A 0xDD67 CHKNUM Make sure FAC is a number 
ü 0xDD6C 0xDD69 CHKSTR Make sure FAC is a string 
ü 0xDD6D 0xDD6A CHKVAL Verify FAC is correct number type 
ü 0xDD76 0xDD73 TM.ERR Type Mismatch error entry 
ü 0xDD0B 0xDD76 NF.ERR NEXT without FOR error entry 
 0xDD7B 0xDD7B FRMEVAL Evaluate expression at (TXTPTR) 
 0xDDD7 0xDDD7 SAVOP Call FREMEVAL recursively 
 0xDDFD 0xDDFD FRMRECUR Use STACK/recursion to evaluate expression 
 0xDE10 0xDE10 FRMSTAK Get FACSIGN and precedence value 
 0xDE15 0xDE15 FRMSTAK2 Pull return address, correctly increment 
ü 0xDE20 0xDE23 FRMSTAK3 No RNDUP; push FACGUARD and FAC onto STACK 
ü 0xDE35 0xDE32 NOTMATH Setup the EXIT routine 
ü 0xDE43 0xDE40 NOTMATH4 Pull ARG, ARGGUARD, and ARGSIGN from STACK 
 0xDE60 0xDE60 FRMELMNT Get array element number in expression 
 0xDE81 0xDE81 STRTXT Get first element string 
 0xDE90 0xDE90 NOTFUNC Evaluate NOT token 
 0xDE98 0xDE98 OEQUAL Implement the EQUAL operator; accelerated 
ü 0xDEA4 0xDEA7 FNFUNC Evaluate FN token; moved 
ü 0xDEAB 0xDEAE SGNFUNC Evaluate SGN token; accelerated 
 0xDEB2 0xDEB2 PARENCHK Check open parenthesis, evaluate expression 
 0xDEB8 0xDEB8 CHKCLSP Check for closed parenthesis 
 0xDEBB 0xDEBB CHKOPNP Check for open parenthesis 
 0xDEBE 0xDEBE CHKCOM Check for comma 
 0xDEC0 0xDEC0 SYNTXCHK Syntax routine 
 0xDEC9 0xDEC9 SY.ERR Syntax error entry 
 0xDECE 0xDECE MINUFUNC Minus function entry 
 0xDED0 0xDED0 EQULFUNC Equal function entry 
 0xDED5 0xDED5 GETIVAL Input the string or numeric data 
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 0xDEF9 0xDEF9 FSCREEN Implement the SCRN( function 
ü 0xDF0C 0xDF09 UNARY Modified to add LN and PI statements 
 0xDF4F 0xDF4F OOR Handle OR operator 
 0xDF55 0xDF55 OAND Handle AND operator 
 0xDF5D 0xDF5D FALSE Return FAC = 0 
 0xDF60 0xDF60 TRUE Return FAC = 1 
 0xDF65 0xDF65 OLT Perform relational operations 
 0xDF7D 0xDF7D STRCMP String comparison function 
 0xDFB0 0xDFB0 NUMCMP Number comparison result 
 0xDFCD 0xDFCD FPDL Implement the PDL statement; modified 
 0xDFD9 0xDFD9 BDIM Implement the DIM statement 
 0xDFE3 0xDFE3 PTRGET General variable scan, DIMFLG & SUBFLG; mod 
 0xE000 0xE000 BASIC COLDSTRT entry point 
 0xE003 0xE003 BASIC2 RESTART entry point 
ü 0xE07D 0xE0DA CHKASCI Set C-flag only for A-Z or clear; modified 
ü 0xE0ED 0xE0E3 PNTARVAL Compute address for the first array value 
ü - 0xE0FF STRSETUP Three byte patch for LEFT$/RIGHT$/MID$  
ü 0xE09A 0xE105 IVALZERO 16-bit integer value for zero 
ü 0xE0FE 0xE107 FP8000 16-bit integer value for 32768; corrected 
ü 0xE102 0xE10C MAKINT Evaluate expression, convert to integer 
ü 0xE108 0xE112 AYPOSINT Convert positive number to integer 
ü 0xE10C 0xE116 AYINT Convert to signed integer 
ü 0XE11E 0xE128 ARRAY Locate array element, create array; modified 
ü 0xE196 0xE198 BS.ERR Bad Subscript error entry 
ü 0xE199 0xE19B IQ.ERR Illegal Quantity error entry 
 0xE19E 0xE19E RA.ERR ReDIM’d Array error entry, modified 
ü 0xE1BC 0xE1A1 OD.ERR Out of Data error entry 
 0xE24B 0xE24B FINDELE Find specified array element 
 0xE2AD 0xE2AD MULSUBS Multiply array subscripts 
 0xE2DE 0xE2DE FFRE Implement the FRE statement, calls GARBAG 
 0xE2F2 0xE2F2 GIVAYFP Float the signed integer in (A/Y) 
 0xE2FF 0xE2FF FPOS Returns the current line position in (CH) 
 0xE301 0xE301 SNGFLT Float Y-register into FAC 
 0xE306 0xE306 CHKIFDIR Check MODE for direct or running 
 0xE30E 0xE30E UF.ERR Undefined Function error entry 
 0xE313 0xE313 BDEF Implement the DEF statement 
 0xE341 0xE341 GETFNC Common routine for DEF FN and FN statements 
 0xE354 0xE354 CALLFNC Process the FN statement 
 0xE3AF 0xE3AF FNCDATA Retrieve five bytes from STACK by (FUNCNAM) 
 0xE3C5 0xE3C5 FSTR Implement the STR$ statement; modified 
ü 0xE3D5 0xE3D0 STRINI Get space for string descriptor in (FAC) 
ü 0xE3DD 0xE3D8 STRSPA Get space for string descriptor in (X/Y) 
ü 0xE3E7 0xE3E2 STRLIT Build a string descriptor in (A/Y) 
ü 0xE42A 0xE426 PUTNEW Store descriptor as a temporary descriptor 
ü 0xE430 0xE449 FC.ERR Formula too Complex error entry 
ü 0xE474 0xE44C OM.ERR3 Out of Memory error entry 
ü 0xE452 0xE454 GETSSPC Make string space in Character String Pool 
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 0xE484 0xE484 GARBAG Implementation of C. Bongers GARBAG routine 
 0xE597 0xE597 CAT2STR Concatenate two strings 
ü 0xE5B2 0xE5CF SL.ERR String too Long error entry 
 0xE5D4 0xE5D4 MOVINS Get string descriptor using (STRING1) 
 0xE5E2 0xE5E2 MOVSTR Move string at (X/Y) having length (A) 
 OxE5FD 0xE5FD FRESTR Release descriptor 
 0xE600 0xE600 FREFAC Release temporary string 
 0xE604 0xE604 FRETMP Release (A/Y) string 
 0xE635 0xE635 FRETMS Free temporary descriptor 
 0xE646 0xE646 FCHR Implement the CHR$ statement 
 0xE65A 0xE65A FLEFT Implement the LEFT$ statement 
 0xE686 0xE686 FRIGHT Implement the RIGHT$ statement 
 0xE691 0xE691 FMID Implement the MID$ statement, check for 0 
ü 0xE6B9 0xE6BC STRSET2 Continuation of STRSETUP patch 
 0xE6D6 0xE6D6 FLEN Implement the LEN statement 
 0xE6DC 0xE6DC GETSTRLN Free string if temporary, return length 
 0xE6E5 0xE6E5 FASC Implement the ASC statement 
 0xE6F5 0xE6F5 GETBYTC Scan to next character and convert to byte 
 0xE6F8 0xE6F8 GETBYT Evaluate expression at (TXTPTR), return byte 
 0xE6FB 0xE6FB CONVINT Convert (FAC) to single byte in X-register 
 0xE707 0xE707 FVAL Implement the VAL statement 
 0xE73D 0xE73D STRCOPY Copy string from (STRING2) to (TXTPTR) 
 0xE746 0xE746 GETASNUM Evaluate expression for 16-bit value 
 0xE74C 0xE74C COMBYTE Evaluate expression for 8-bit value 
 0xE752 0xE752 GETADDR Convert (FAC) to a 16-bit value 
 0xE764 0xE764 FPEEK Implement the PEEK statement 
 0xE77B 0xE77B BPOKE Implement the POKE statement 
 0xE784 0xE784 BWAIT Implement the WAIT statement 
ü 0xE7A0 - FADDH Removed add 0.5 to FAC function 
ü - 0xE7A1 FPPI FP value for PI with guard byte value 
 0xE7A7 0xE7A7 FSUB Internal entry for subtraction, load guard 
 0xE7AA 0xE7AA OMINUS Implement the – statement; modification 
 0xE7BE 0xE7BE FADD Internal entry for addition, load guard byte 
 0xE7C1 0xE7C1 OPLUS Implement the + statement; modification 
ü 0xE829 0xE81D COMPFAC1 Normalize value in FAC 
ü 0xE82E 0xE822 NORMFAC1 Shift bytes left in FAC, FACGUARD = 0 
ü 0xE84E 0xE842 ZEROFAC Clear FACEXP and FACSIGN to zero 
ü 0xE874 0xE868 NORMFAC2 Shift FAC left and increment A-reg 
ü 0xE89E 0xE892 COMPFAC2 Compliment FAC and then its mantissa 
ü 0xE8C6 0xE8BA INCMANT Increment the FAC mantissa 
ü 0xE8D5 0xE8C9 OF.ERR Overflow error entry 
ü 0xE8F0 0xE8CE SHFTBYT1 Shift bytes to the right into FACGUARD 
ü 0xE907 0xE8FC SHFTBITS Shift bits to the right into FACGUARD 
ü - 0xE908 PDL2 Ensure argument is 0:3 before call to PREAD 
ü - 0xE913 FPLOGE FP value for LOG(e) to convert LN -> LOG 
ü 0xE92D 0xE918 FPSQR0.5 FP value for the square root of 0.5 
ü 0xE932 0xE91D FPSQR2.0 FP value for the square root of 2.0 
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ü 0xE937 0xE922 FPN0.5 FP value for - 0.5 
ü 0xE93C 0xE827 FPLN2 FP value for LN(2) 
ü 0xE918 0xE92C POLY.LOG Coefficients to calculate natural log LN 
 0xE941 0xE941 FLN Implement the LN statement 
 0xE97F 0xE97F FMULT Internal entry for multiplication, use guard 
 0xE982 0xE982 OMULT Implement the * statement; modification 
 0xE9E3 0xE9E3 LOADARG Load ARG register from (A/Y), ARGGUARD = 0 
ü 0xEA0E 0xEA10 PROCEXP Process exponents; modified 
ü 0xEA2B 0xEA2E ZEROFERR Check for zero or overflow error 
ü 0xEA36 0xEA32 OF.ERR2 Overflow error entry 
ü 0xEAE1 0xEA35 DZ.ERR Division by Zero error entry 
ü 0xEA55 0xEA3A MULFAC10 Multiply FAC by 10, no RNDUP, copy guards 
ü 0xEA50 0xEA50 FP10.0 FP value for 10.0 
ü 0xEA5E 0xEA55 DIVFAC10 Divide FAC by 10, no RNDUP; modified 
 0xEA66 0xEA66 FDIV Internal entry for division, use guard bytes 

 
 
 
 
 
 
 
 
 
 
 
 
 

 0xEA69 0xEA69 ODIVIDE Implement the / statement; modification 
ü 0xF070 0xEAD7 FP.25 FP value for 0.25 
ü 0xED17 0xEADC FP1.0E9 FP value for 1.0E+09 
 0xEAE6 0xEAE6 COPYM2F Copy MULMANT to FACMANT; call NORMFAC1 
 0xEAF9 0xEAF9 LOADFAC Load FAC register from (A/Y), FACGUARD = 0 
 0xEB1E 0xEB1E COPYF2T2 Copy the FAC register to the TEMP2 register 
 0xEB21 0xEB21 COPYF2T1 Copy the FAC register to the TEMP1 register 
 0xEB27 0xEB27 COPYF2FR Copy the FAC register to FORPNT 
 0xEB2B 0xEB2B COPYFAC Copy the FAC register to (X/Y), use RNDUP 
 0xEB53 0xEB53 COPYA2F Copy ARG to the FAC register, copy guards 
 0xEB63 0xEB63 COPYF2A Copy FAC to the ARG register, copy guards 
ü 0xEB72 0xEB70 RNDUP Increment FAC if FACGUARD MSB set; modified 
 0xEB82 0xEB82 SIGNCHK Test FAC for negative, zero, positive 
 0xEB90 0xEB90 FSGN Implement the SGN statement 
 0xFB93 0xEB93 FLOAT Convert (A) to signed value of -128 to 127 
 0xEBAF 0xEBAF FABS Implement the ABS statement 
ü 0xEBB2 0xEBB5 FPCOMP Compare FAC with (A/Y), use T3GUARD; mod 
 0xEBF2 0xEBF2 FP2INT Convert FAC to a 16-bit integer 
 0xEC23 0xEC23 FINT Convert FAC to integer, then refloat to FP 
 0xEC40 0xEC40 CLRMANT Clear FAC mantissa 
 0xEC4A 0xEC4A GETINT Convert numerical string to FP in FAC; mod 
ü 0xECD5 0xECF6 ADD2FAC Add value in (A) to FAC; modified 
ü 0xED19 0xED0A PRTMSG19 Print ‘ in ‘, line number, CR; modified 
ü 0xED24 0xED18 LINEPRT Print (X/A) as a 16-bit integer 
ü 0xD358 0xED25 MESG19 asc ‘ in ‘ 
ü 0xED0A 0xED2A FP9.9E7 FP value for 9.9E07 
ü 0xED0F 0xED2F FP9.9E8 FP value for 9.9E08 
 0xED34 0xED34 FPOUT Print FAC as numerical string in STACK; mod 
ü 0xEE6C 0xEE5C FPDECTBL Hex to decimal conversion table 
 0xEE8D 0xEE8D FSQR Implement the SQR statement; modified 
 0xEE97 0xEE97 OPOWER Implement the ^ statement; modified 
 0xEED0 0xEED0 OGT Implement the > statement; also is NEGFAC 
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 0xEEDB 0xEEDB FPINVLN2 FP value for 1/LN(2) 
 0xEEE0 0xEEE0 POLY.EXP Coefficients to calculate exponential 
ü 0xE916 0xEF04 FP1.0 FP value for 1.0 
 0xEF09 0xEF09 FEXP Implement the EXP statement; modified 
ü 0xEF72 0xEF31 POLYNOML Save (A/Y) to (COEFPTR); moved 
ü - 0xEF3E FLOG Convert natural log LN to base-10 log LOG 
ü - 0xEF48 FPI Load FAC and FACGUARD with the value of PI 
ü - 0xEF57 POLYSIN Load (A/Y) with address of POLY.SIN coefs. 
ü 0xEF5C 0xEF5B POLYPROC Odd polynomial processing, no RNDUP 
ü 0xEF76 0xEF71 POLYNOM Normal polynomial processing; modified 
 0xEFA6 0xEFA6 RANDVAL1 Integer value A = 0x12B9B0A5; modified 
 0xEFAA 0xEFAA RANDVAL2 Integer value C = 0x361962EA; modified 
 0xEFAE 0xEFAE FRND Implement the RND statement; modified 
 0xEFEA 0xEFEA FCOS Implement the COS statement 
 0xEFF1 0xEFF1 FSIN Implement the SIN statement; modified 
 0xF03A 0xF03A FTAN Implement the TAN statement; modified 
ü 0xF066 0xF05C FPIDIV2 FP value for PI/2 
ü 0xEE67 0xF061 FP0.5 FP value for 0.5 
ü 0xF075 0xF066 POLY.SIN Coefficients to calculate SINE; modified 
ü 0xF094 - UNREFBYT Unreferenced bytes for MICROSOFT! Backwards 
ü 0xF06B 0xF099 FPIMUL2 FP value for 2*PI 
 0xF09E 0xF09E FATAN Implement the ATN statement; accelerated 
ü 0xF0CE 0xF0CC POLY.ATN Coefficients to calculate ARCTAN 
 0xF10B 0xF109 PGZCODE Routines that are copied to page-zero 
 0xB1 0xB1 CHRGET Increment TXTPTR and read ASCII character 
 0xB7 0xB7 CHRGOT Recall previous ASCII value read 
 0xC9 0xC9 FPRAND Random number generator seed 
ü 0xF128 0xF125 COLDSTRT BASIC enters to setup pointers and vectors 
ü - 0xF1B1 FRMSTAK4 Continuation of FRMSTAK3 
ü - 0xF1BA COPYF2T3 Copy the FAC register to the TEMP3 register 
ü - 0xF1C5 INCCOEF Increment the coefficient pointer 
ü - 0xF1CC CLEARMUL Clear MULMANT to 0x00 for FMULT 
 0xF1D5 0xF1D5 BCALL Implement the CALL statement 
 0xF1DE 0xF1DE BIN Implement the IN# statement 
 0xF1E5 0xF1E5 BPR Implement the PR# statement 
 0xF1EC 0xF1EC PLOTFNS Get LORES coordinates for H2 and V2 < 48 
 0xF209 0xF209 LINCOOR Get A,B at C values for HLIN and VLIN 
 0xF225 0xF225 BPLOT Implement the PLOT statement 
 0xF232 0xF232 BHLIN Implement the HLIN statement 
 0xF241 0xF241 BVLIN Implement the VLIN statement 
 0xF24F 0xF24F BCOLOR Implement the COLOR= statement 
 0xF256 0xF256 BVTAB Implement the VTAB statement 
 0xF262 0xF262 BSPEED Implement the SPEED= statement; modified 
 0xF26D 0xF26D BTRACE Implement the TRACE statement 
 0xF26F 0xF26F BNOTRACE Implement the NOTRACE statement 
 0xF273 0xF273 BNORMAL Implement the NORMAL statement 
 0xF277 0xF277 BINVERSE Implement the INVERSE statement 
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 0xF280 0xF280 BFLASH Implement the FLASH statement 
 0xF286 0xF286 BHIMEM Implement the HIMEM: statement 
 0xF2A6 0xF2A6 BLOMEM Implement the LOMEM: statement 
 0xF2CB 0xF2CB BONERR Implement the ONERR statement 
 0xF2E9 0xF2E9 HANDLERR Handles an active ONERR GOTO for errors 
 0xF318 0xF318 BRESUME Implement the RESUME statement 
 0xF331 0xF331 BDEL Implement the DEL statement 
 0xF390 0xF390 BGR Implement the GR statement; accelerated 
 0xF399 0xF399 BTEXT Implement the TEXT statement; accelerated 
ü 0xF39F - STORE Removed this statement 
ü - 0xF39C CXREAD Originally at 0xC5D1 to read audio waveforms 
ü 0xF3BC - RECALL Removed this statement 
 0xF3D8 0xF3D8 BHGR2 Implement the HGR2 statement; modified 
 0xF3E2 0xF3E2 BHGR Implement the HGR statement; modified 
ü 0xF3F2 0xF3EC CLRHIRES Clear and set selected HIRES screen; mod 
ü - 0xF3EE SETHIRES Set selected HIRES screen to a value; mod 
 0xF411 0xF411 HPOSN Set the HIRES cursor position 
 0xF457 0xF457 HRPLOT Plot a HIRES dot on the screen 
 0xF465 0xF465 HRMOVLF Move HIRES cursor left 
 0xF47E 0xF47E COLSHIFT If odd screen byte, inverse COLBITS 
 0xF48A 0xF48A HRMOVRT Move HIRES cursor right 
ü - 0xF49C DRAWHDR Separates an XDRAW or a DRAW operation; new 
ü 0xF457 0xF4A6 XDRAWIT XDRAW one pixel 
ü 0xF4B3 0xF4B8 DRAWIT DRAW one pixel 
ü 0xF4D5 0xF4D1 HRMOVUP Move HIRES cursor up 
ü 0xF505 0xF501 HRMOVDN Move HIRES cursor down 
ü 0xF530 - HLINRL Removed this routine; routine never called 
ü 0xF5B8 0xF430 BITABLE Used to initialize the COLOR variable 
 0xF53A 0xF53A HLIN Draw line from last plotted point; mod 
ü 0xF5BA 0xF5B3 ROTATBL Rotational cosine table every 5.625o; mod 
ü 0xF72D 0xF5C7 DRAWCMD The DRAWCMD routine (DRWPNT) for DRAWSHP 
ü 0xF5CB - HFIND Removed this routine; routine never called 
ü 0xF601 - DRAW0 Removed this routine; routine never called 
ü 0xF605 0xF600 - The DRAWSHP routine for DRAW, now DRAWCMD 
ü 0xF661 0xF600 - The DRAWSHP routine for XDRAW, now DRAWCMD 
ü 0xF65D - XDRAW0 Removed this routine; routine never called 
ü - 0xF666 SQR2 Continuation of FSQR 
ü - 0xF58E COPYA2F3 Continuation of COPYA2F 
ü - 0xF693 COPYF2A2 Continuation of COPYF2A 
ü - 0xF6A8 COPYT32A This is the COPYT32A routine; uses LOADARG 
 0xF6B9 0xF6B9 GETFNS Get HIRES plotting coordinates (X/Y) and (A) 
 0xF6E9 0xF6E9 BHCOLOR Implement the HCOLOR= statement 
 0xF6F6 0xF6F6 HRCOLTBL Used to initialize the HRCOLOR variable 
 0xF6FE 0xF6FE BHPLOT Implement the HPLOT statement 
 0xF721 0xF721 BROT Implement the ROT= statement 
 0xF727 0xF727 BSCALE Implement the SCALE= statement 
ü - 0xF72D RND2 Continuation of the FRND routine 
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 0xF769 0xF769 BDRAW Implement the DRAW statement 
 0xF76F 0xF76F BXDRAW 

W 
 

Implement the XDRAW statement 
ü - 0xF775 RND3 Continuation of the RND2 routine 
ü 0xF775 - SHLOAD Removed this statement 
ü - 0xF791 TITLE “Apple //e+” in upper ASCII 
ü - 0xF79B PARSIEX Modifications for 80 columns and lower case 
ü 0xF7BC - TAPEPNT Removed this routine 
ü - 0xF7BE LISTEX Modifications for LIST in 80 columns 
ü - 0xF7C6 PRTCREX Modifications for PRINT in 80 columns 
ü 0xF7D9 - GETARYPT Removed this routine 
 0xF7E7 0xF7E7 BHTAB Implement the HTAB statement; 40/80 columns 

Table C.1.  Applesoft and Modified Applesoft Entry Points 
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Appendix D 
 
 
 
A great deal of time and effort was put into an on-going project in order to modify DOS 3.3 so that a Binary 
file could be loaded directly into memory when I first began working at Sierra On-Line in late 1983.  This 
effort ultimately produced a modified DOS BLOAD command that utilized additional keywords that would 
provide the necessary parameters in order to achieve its accelerated processing rate.  That accelerated 
processing rate could be achieved by reading the data in each file sector and saving that sector data directly 
to memory one page at a time.  Unfortunately, I have no further information on the list of additional 
keywords that were utilized and the extent of the modifications that went into DOS 3.3, the DOS BLOAD 
command, and the changes that were made to the Valid Keyword table.  Binary files could be loaded into 
memory in a surprisingly accelerated rate by this uniquely modified DOS 3.3.  After I redesigned the DOS 
HELP command for DOS 4.5.06H as I thoroughly explain in DOS 4.5 Volume and File Disk Management 
System Second Edition, I was able to include a number of additional features into that DOS.  The DOS 
SLOAD and SSAVE commands were two DOS commands that I had available space to include.  The DOS 
SLOAD command is very competitive to that modified Sierra On-Line BLOAD command and it is able to read 
into memory a Special Binary file in a surprisingly accelerated rate.  The Special Binary file does not utilize 
the first four bytes in its first data sector for its memory load address and for its length in bytes, and those 
four bytes are simply not included.  The memory load address and the length in bytes for a Special Binary 
file must already be known in order to write this file onto a disk volume or to read this file from a disk 
volume.  Since I began developing the SHAPE management software and exploring the Applesoft routines 
that specifically manage SHAPE Tables, I have reconsidered the usefulness of the DOS SLOAD and SSAVE 
commands.  Furthermore, removing all of the routines that depend on the cassette input and output data 
ports except for the LOAD and the READ Applesoft statements leaves the demand for developing a DOS 
SHLOAD command in order to replace the excised Applesoft SHLOAD statement as well as developing a 
companion DOS SHSAVE command.  In view of these changes to the DOS 4.5.06H command repertoire 
and in the creation of the new DOS 4.5.08H repertoire that replace the DOS SLOAD and SSAVE commands, 
the following describes the new SHLOAD and SHSAVE Binary file commands that fully support the 
management of Applesoft SHAPE Tables. 
 
 
 

Command Command Syntax 
BLOAD f [,Ss][,Dd][,Vv][,Aa][,R] 
BRUN f [,Ss][,Dd][,Vv][,Aa] 
BSAVE f [,Ss][,Dd][,Vv][,Aa][,B][,Ll][,R[1]] 
LLOAD f [,Ss][,Dd][,Vv][,Aa][,R] 
LSAVE f [,Ss][,Dd][,Vv][,Aa][,B][,Ll][,R[1]] 
SLOAD f [,Ss][,Dd][,Vv][,Aa][,B][,R] 
SSAVE f [,Ss][,Dd][,Vv][,Aa][,B][,Ll][,R[1]] 

Table D.1.  Binary File Commands in DOS 4.5.08H 
 
 
 
The Binary File commands in the DOS 4.5.08H command repertoire consist of those commands that 
manage the general operation of Binary or assembly language files.  The DOS BLOAD command loads a 
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Binary file into memory from a disk volume.  The DOS BRUN command loads a Binary file into memory 
from a disk volume before it begins processing the instructions that now reside in memory.  The DOS 
BSAVE command saves the Binary program that currently resides in memory into a file in a disk volume.  
The DOS LLOAD command loads a Lisa Binary file into memory from a disk volume.  The DOS LSAVE 
command saves the Lisa Binary program that currently resides in memory into a file in a disk volume.  The 
DOS SHLOAD command loads a SHAPE Table Binary file into memory from a disk volume.  The DOS 
SHSAVE command saves a SHAPE Table Binary structure that currently resides in memory into a file in a 
disk volume. 
 
The syntax of the Binary File commands for DOS 4.5.08H is shown in Table D.1.  All of the Binary File 
commands are permitted to be used from within an Applesoft program or an assembly language routine as 
well as on the Apple Command Line. 
 
 
 
 

SHLOAD Command 
 
 
 

SHLOAD f [,Ss][,Dd][,Vv][,Aa][,B][,R] 
 
Example: SHLOAD DRAW SHAPE.S,A$B000 
  SHLOAD DRAW SHAPE.S,A$B000,B 
  SHLOAD DRAW SHAPE.S,R 
 
 

This command is not available in DOS 3.3 for Binary File commands and this command was initially 
developed for DOS 4.5.08H.  The DOS SHLOAD command reads into memory the SHAPE Table Binary file 
f in the specified volume at memory address a if the A keyword is included.  If the A keyword is not included 
with the DOS SHLOAD command, the SHAPE Table Binary file f is read into memory at the address the file 
was originally saved or last saved.  SHAPE Table Binary files are Special Binary file Type 0x08. 
 
The DOS SHLOAD command copies the 16-bit memory load address that resides in ADRVAL into the page-
zero variable HRSHPTBL at 0xE8:E9 in the same way that it is copied by the Applesoft handler for the 
Applesoft SHLOAD statement.  The Applesoft handler for the Applesoft SHLOAD statement also copies the 
memory load address to the page-zero variables FRETOP at 0x6F:70 and to HIMEM at 0x73:74.  Only if the 
B keyword is included with the DOS SHLOAD command will DOS copy the memory load address that is in 
ADRVAL to FRETOP and to HIMEM. 
 
If the R keyword is included with the DOS SHLOAD command, the memory load address and the number of 
bytes that are read into memory are displayed.  A SHAPE Table Binary file utilizes the first four bytes in its 
first data sector for its memory load address and for its length in bytes where both pair of bytes are in Lo/Hi 
byte order.  Therefore, when the A keyword is not included with the DOS SHLOAD command, the memory 
load address information is obtained from the first pair of bytes in its first data sector.  The DOS SHLOAD 
handler always obtains the number of bytes to read into memory from the second pair of bytes in its first 
data sector.  The Applesoft SHLOAD statement is removed from the modified Applesoft. 
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SHSAVE Command 
 
 
 

SHSAVE f [,Ss][,Dd][,Vv][,Aa][,B][,Ll][,R[1]] 
 
Example: SHSAVE DRAW SHAPE.S 
  SHSAVE DRAW SHAPE.S,B 
  SHSAVE DRAW SHAPE.S,R 
  SHSAVE DRAW SHAPE.S,A$B000,L$34,R1 
 
 

This command is not available in DOS 3.3 for Binary File commands and this command was initially 
developed for DOS 4.5.08H.  The DOS SHSAVE command saves the SHAPE Table Binary structure to file f 
on the specified volume using the memory address a and the length l in bytes if the A and the L keywords 
are included, respectively.  These two keywords are optional in DOS 4.5, but if they are included, both 
keyword values are required.  If the A and the L keywords are not included, the address a and the length l 
values of the previous SHLOAD or SHSAVE command are utilized.  SHAPE Table Binary files are Special 
Binary file Type 0x08. 
 
The B keyword can be used with the DOS SHSAVE command in order to implement the File Delete/File 
Save strategy.  That is, the SHAPE Table Binary file f is deleted from the volume and then saved to the same 
volume in order to ensure that the TSL sector(s) of file f contain only those Track/Sector entry pairs that 
are required and utilized by the file. 
 
If the R keyword is included with the DOS SHSAVE command, the memory save address and the number of 
bytes that are written to the specified volume are displayed.  If a non-zero R keyword is included with the 
DOS SHSAVE command, the number of verified sectors is also displayed with the memory address and the 
file size information.  If CONFIG Bit 1 is set, the SHAPE Table Binary file f is not verified after it is saved 
to the specified volume.  The VALSCNFG variable can be cleared by using the R keyword with the DOS 
CONFIG command followed by a comma.  The features of the newly designed DOS SHSAVE command were 
never included in the original Applesoft. 
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