My Applesoft Journey

Walland Philip Vrbancic, Jr.

April 20, 2025

i

Table of Contents

Introduction to My ApPpPIESOft JOUINEY ™cocviuiiieiereieiiieie ettt s et b et 1
Understanding the DEfICIENCIES 1Mccuuieruieiiieiieiiieiieeie et ete et et esteeeteebeeseaeeseesabeebeessseesaessseanseensnas 2
Applesoft Mathematical Routines and FUNCHONScoiiiuiiiiiiiiniiiiiiieceieeeseee e 2
ADPPLESOTE VAITADIES.eiiiiieiiiciieeie ettt ettt sttt et st b et et sae et et e b e b 3
Applesoft Floating-Point Variablescoiiiiioiiiiiiiiiecieiterieeeseete et st 7
Management of Applesoft Floating-Point REIStErs........cceivuiriiriiiiiiiiiiierieeccieeeeeeeee e 8
Introduction to Applesoft SOUICE COdeoouiiiiriiiiiiiiiie e e 10
The ApPPLEeSOft STALEMENLSc..eeiiieiieeiieiie ettt ettt e e st e et e s saeebeessbeesbeessseenseessseenseansnas 11
The APPLESOTt INTEIPIEIETccviiiiiieiieeie ettt ettt et te e st e et essaeesbeesabeesbeessseenseessseenseansnas 15
String and NUMETIC VariabIes.......cc.ceiiiiiiiiiiiiiieeie ettt ettt ettt et e st e esseesnteebeessseeseens 25
Floating-Point Arithmetic OPETationS..........cccuieruieiiiierieeitiesieeiteesteeieesteeteesteebeessaeeseesaseeseessseeseessseenne 35
Transcendental Arithmetic OPEIAtIONSc.eeriieriieriieriiieiie et etee et erteeeteebeesaeeseesebeesbeessseenseessseenseansnas 43
Applesoft Initialization & Miscellaneous StAteMENtS..........coeeveriiriiriiriinieeecee e 50
Management of LORES and HIRES GraphiCscccceciriiiiiiiiniiiiieieeeeseecesese et 52
Derived Transcendental Arithmetic OPErations.........cccueecuierieeriienieeiiienieeitesteeite e eeee e ebeeseaeeseeeeee e 64
Testing Applesoft Floating-Point ROULINES..........cccoiiiiiiiiiiiiiiieiiecieeeeee et 68
INSTAIING APPLESOTE ... ittt ettt e st e et e e s aae e beessaeenseeeabeenseessseenseesnseenne 77
ADPCIAIX A .ttt bttt h et e a e bttt e h e e bttt e ht e bt et bt e bt et eatentes 81
ADPPCIAIX B .t h ettt h ettt b et eh e bt et et nees 87
ADPPCIAIX € ottt bt e a e bt bt e a e h et e ht e bttt eht e bt et eatentes 91
ADPPCIAIX D ottt ettt a e bttt et h et e ht e bt et e et e bt et 101

SHLOAD COMMAN........cocuiiiiiereiieiieieietcieieie ettt s et ss e s st s s sesnse e 102

SHSAVE COMMAN.......cocuiiiiieieiiiiiieieteictee ettt ettt b et s s ss s s s sesnse e 103

il

v

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.

List of Figures

Example Applesoft Program Layout in ME@MOTYccceeviieriieiiieniienieeiie e 4
Vertical Coordinate Conversion to GBAS ... 56
Unmodified Applesoft DRAWOCMDcccoiiiiiiieiieieeeee ettt st 61
Modified Applesoft DRAWCMDcoooiiiiiiiiiieiiecieeite ettt ettt st e e s 61
Test 1 APPLeSOft PrOGIam........ccviiiiiiiiiiiieiiee ettt ettt e e s 68
Test 1 Unmodified APPIESOTtooiuiiiiiiieeiiee ettt e 69
Test 1 Modified APPIESOTt.......oiiiiiiieiiee ettt st 69
Test 2 Unmodified APPIESOTtooiiiiiieieeiee et e 70
Test 2 Modified APPIESOTL.......ieiiiiiieiiee ettt et 70
Test 3 Unmodified APPIESOTE ...c..eiiiiiiiieiieie et et 70
Test 3 Modified APPIESOTt....c.eiuiiiiieieeiiee ettt et 70
Test 4 Unmodified APPIESOTE ...c..eiiiiiiiieiieie ettt 71
Test 4 Modified APPIESOTt.......iiuiiiiieieeiiee ettt s 71
Test 5 Unmodified APPIESOTE ...c.eiiiiiiiieiieie et 72
Test 5 Modified APPIESOTt....c..iiuiiiiieie ettt et e 72
Test 6 Unmodified APPIESOTE ...c.eiiiiiiiieiieieeee ettt et 72
Test 6 Modified APPIESOTt.......eiruiiiiiiieeiee ettt et e 72
Test 7 Unmodified APPIESOTE ...c..eiiiiiiiieiieieeeee ettt 74
Test 7 Modified APPIESOTt.......eiiuiiiiieieeiee ettt e 74
Test 7.1 Unmodified APPLESOTteovuiieiieiieiiee e e 74
Test 7.1 Modified APPIESOTt.....cc.eiiiiiiieiiee et 74
Test 8 UNmodified APPIESOTE ...c..eiiiiiiiieiieieeee ettt e 74
Test 8 Modified APPIESOTt....c..iiiuiiiiieieeiiee ettt et 74
Test 9 Unmodified APPIESOTE ...c..eiiiiiiiieiieie ettt 75
Test 9 Modified APPIESOTt.......eiuiiiiieieeiiee ettt e 75
Test 10 Unmodified APPLESOLtcviiuiiiiieie et 76
Test 10 Modified APPLESOTt......ccueiiiiiiiieiieie ettt e 76
Test 11 Unmodified APPLESOLtccveiiuiiiiieie et 76
Test 11 Modified APPLESOTt......cc.eiiiiiiiieiieie ettt e 76
BLDROM EXEC Fil@ccutiiiiiiiiiiiieiieieeete sttt ettt ene s 78
BLDV2ROM EXEC Fil@....c.ceiiiiiiiiiiiieiieiieieieie sttt 78
SETUP Command Filecoouiiiiiiiiiiiiieieeeeeee ettt st 79

vi

List of Tables

Table 1. Simple Variable Descriptor Definitions in Applesoft..........ccoveevieriininiiniiiniiieniceeeeee 5
Table 2. Array Variable Descriptor Definitions in Applesoft..........coceeviriiriininiiniiniiienceeeceeee 5
Table 3. Single Array Element Descriptor Definitions in Applesoft..........coceeverieriininieniininienceeeee, 6
Table 4. Routines That Copy Floating-Point Registers or NUMDETScccceverieniinienieniinienienceeeeee 9
Table 5. General Layout of the CO:FF ROMcccoooiiiiiiiiiiiiiciiee ettt 10
Table 6. Bongers Simple Variable Descriptor Processing in Pass ©........ccccoceviiviniiniininienieencnieneees 31
Table 7. Bongers Array Variable Element Processing in Pass 1ccccooceviiiiiiiniiniincniieneeeneneeee 31
Table 8. Applesoft Natural Log Routine Polynomials............ccccceeiiiiiiiiiienieniieiieie e 37
Table 9. Applesoft Exponential Function Polynomialsccceoeriiniiiiiiiniiniiiecccceceeeeesiee 44
Table 10. Applesoft Sine Function Polynomialsc.ceccveriiiiiiiiiiiiieniieieeeeeee e 48
Table 11. Expanded Applesoft Sine Function Polynomialsccccovieviriiiniininiiniiicicceceeneeee 48
Table 12. Applesoft Arctangent Function Polynomials............coceeviiiiniiiiiiiiniininieneeceeneeesesee 50
Table A.1. Page-Zer0 DEfINItIONScc.cevuiiiiieiiieiiieiieeie ettt te ettt e ste et ee s e ebeesabeesbeessseensaessseenseensnas 86
Table B.1. Modified Applesoft Statements...........ceevuiiriiiiiiiiiiieiiecie et 89
Table C.1. Applesoft and Modified Applesoft Entry Points...........cccoevieriiieiiiniiieiieiiieieceeeeee e 99
Table D.1. Binary File Commands in DOS 4.5.08Hcccoooiieiiiiiiiiiieieeieee e 101

vii

viii

My Applesoft Journey

Introduction to My Applesoft Journey "

I was graduated with my Bachelor of Science degree in Electrical Engineering in June, 1982. Having a 4.0
GPA provided me with many opportunities in securing an engineering position. Later that year, I decided
to accept employment with Rockwell International in Downey, California. I lived close to Downey so |
was fortunate to have a rather short commute. Of all the department managers who interviewed me, |
selected to work under the manager of the Simulation Laboratory as an Initialization Engineer.
Management encouraged all of the newly hired engineers to become familiar with Fortran 77 which had
been recently released on the Nova computers by DEC. I soon began to realize my affinity for this computer
language and my multi-player Black Jack Fortran program was a hit among my colleagues. Rockwell
established a home computer purchase program for all employees the following year. After careful
consideration, I selected the Apple][+ which included the AutoStart ROM. In short order I mastered
assembly language for the 6502 microprocessor and Applesoft BASIC. By marrying assembly language
routines with Applesoft programs using a tool I had developed which utilized that very technique, I
advanced my knowledge of both languages far more quickly. In 1985 I accepted an offer from Ken
Williams to work as an assembly language programmer at Sierra On-Line in Oakhurst, California.

I had become fascinated with numerical sort routines and very high speed graphic animation routines early
in my computer language education, and Sierra On-Line was certainly the ideal environment to learn and
to implement those and many other computer routines. One of my later assignments was to assist in the
development of HomeWord Speller, the companion home productivity product to HomeWord which had
already been released. My tasks included providing all of the diskette input and output routines and to
develop the routines that would draw graphical icons on the HomeWord Speller initialization and
configuration screens. I had already designed many of the diskette input and output routines for my hybrid
Applesoft programs that utilized embedded assembly language routines. Developing the software to draw
graphical icons was going to be a challenge. I turned to the graphical routines in Applesoft for help.

I developed a hybrid Applesoft program that could draw a collection of very simple High Resolution shapes
like dots, vertical lines, horizontal lines, boxes, and parallel lines in order to create a complete and complex
icon. Williams said that I can always assume that his customers owned Apple computers that contained
ROMs that were installed with Applesoft Version 2; that it was safe to utilize any ROM routine.
Unfortunately, I found that if I utilized the Applesoft HRPLOT routine at @xF457 and the HLIN routine at
OxFS53A, these routines do not correctly calculate the delta difference for the horizontal and the vertical start
to end points for my particular use and requirements. And so began my lifelong Applesoft journey.

The BASIC language interpreter was certainly a wise choice for Apple Computer to purchase from the
fledging Microsoft Corporation. The interpreter code for their BASIC was small enough to occupy about
0x2200 bytes of a @x3000 byte Apple]| ROM. This gave Apple engineers around @x600 bytes in order
to include Low Resolution and High Resolution graphics that was unique vis-a-vis the Apple][hardware
design. The final @x800 bytes was reserved for Steven Wozniak’s brilliant ROM Monitor. The finished
ROM that contains Microsoft’s BASIC interpreter and Apple’s graphic routines comprise Applesoft. Apple
Computer has yet to publish the source code for Applesoft. Several publishers such as the Apple Orchard
and Call A.P.P.L.E. have reprinted Applesoft Internals by John Crossley. The Sander-Cederlof

DocuMentor has also been used to provide, perhaps, the most complete source code documentation for
Applesoft internals. Mr. Sander-Cederlof even includes his own personal comments within this
documentation which identifies coding errors, routines that contain dangerous code under specific
conditions, and routines that can utilize improvable code or replacement code. It was many, many years
after I had already sourced the Enhanced Apple /e ROM Monitor and the Applesoft interpreter when I
came across the S-C DocuMentor for Applesoft. Therefore, I have the benefit of both my own personal
investigation into the Applesoft interpreter and the investigation of the Applesoft interpreter by Mr. Sander-
Cederlof. I have taken all of the comments by Mr. Sander-Cederlof under advisement as I have made
various modifications to my version of the Applesoft interpreter.

I like to think of assembly language mnemonics such as LDA and STA as instructions. And, I like to think
of Applesoft tokens such as FOR and NEXT as statements. Applesoft token numbers range from @x80 to
OxEA and these token numbers are always fixed to their assigned statement. If a new statement could be
added to Applesoft, that statement would always be interpreted as @xEB. If another new statement could
be added, it would always be interpreted as @xEC, and so forth. If an Applesoft statement is ever made
unusable, its token number can never be retired.

Applesoft is heavily dependent on page-zero variables for many reasons, for example: Applesoft occupies
a ROM which can only be read and never written; there is no dedicated CX page of bytes for Applesoft
variables and pointers as there are for slot cards; there is no dedicated TEXT page of bytes for Applesoft
variables and pointers as there are for slot cards; all Applesoft variables and arrays require page-zero
pointers for their administration; all Applesoft TEXT manipulation routines require page-zero variables and
pointers; all Applesoft floating-point routines require page-zero multi-byte registers, variables, and
pointers; and, all Applesoft graphic routines require page-zero variables and pointers. Applesoft is heavily
dependent on page-one, or the STACK, for many reasons, for example: to tokenize instructions entered on
the Apple Command Line; to display a line of Applesoft instructions and statements; to display a
hexadecimal floating-point number as a base 10 number; to save the parameters for a defined function as it
is utilized; and, to implement recursion. For all of these and many more reasons, I have included all of the
definitions for page-zero variables in Appendix A that are used in the ROM Monitor, in Applesoft, and in
DOS 4.5.08H. Appendix B lists all of the Applesoft statements, their token number, and the location in
Applesoft where that statement is processed. Appendix C contains all of the internal Applesoft entry
locations for the modified version of Applesoft and whether these entry locations are the same or different
in the unmodified version of Applesoft. The modified version of Applesoft is available for download.

Understanding the Deficiencies 1n
Applesoft Mathematical Routines and Functions

Applesoft mathematical routines and functions that operate on very small floating-point numbers can
become problematic. These routines and functions may exhibit non-commutative addition, non-
commutative multiplication, non-reflexive equality evaluation, irregularities of the exponent when the
exponent is very small or very large, errors in the multiplication algorithm, errors in the binary to decimal
conversion, and significant errors in the trigonometric functions that involve very small arguments. Some
intermediate arguments depend on a full 40-bit significand since these arguments utilize a guard byte. On
the other hand, some intermediate arguments are rounded and they are pushed onto the stack using only
their 32-bit significand. Rounding consists of simply inspecting the most significant bit of the guard byte

2

and if that bit is set, the 32-bit significand is incremented. When addition, subtraction, or multiplication is
initiated, only one operand uses a full 4@-bit significand and the other operand uses a 32-bit significand. In
division, only the quotient has any extra significance having two additional bits. Sticky bits are not utilized
in Applesoft mathematical routines and functions in order to assist in making more intelligent numerical
rounding decisions. Since the cosine and the tangent trigonometric functions depend solely on the sine
function, they are equally flawed if not more so. The Applesoft mathematical routines and functions can
provide acceptable results if very small or very large arguments are avoided and if the number of significant
digits is limited to only what is acceptable given the total range of the floating-point numerical values for
all Applesoft arguments.

Applesoft arithmetic also contains known irregularities that were purposefully implemented, some in which
the user would not be expected to anticipate. These irregularities occur because certain decisions were
made while designing the arithmetic algorithms. Other irregularities may also occur unintentionally
because of coding errors or software mistakes. Non-commutative addition means that different results are
obtained when the positions of the variables being added are exchanged. Non-reflexive equality means that
different evaluations are obtained when the positions of the variables being compared are exchanged. When
the exponent of a very small number is equal to -128, for example, a positive quotient will be obtained
without regard to the sign of the divisor or the sign of the dividend. When two consecutive variables are
nearly zero and they are multiplied, their product is shifted to the right one extra bit. Non-communicative
multiplication issues are also confounded by decimal to binary and binary to decimal conversions where an
identity might be expected but cannot be obtained. Unless a Taylor series is utilized that has at least thirteen
to fifteen iterations, the Applesoft sine function exhibits extremely poor accuracy for arguments that are
near zero. And, the Applesoft sine function generates @ for all arguments that are greater than 0.5 * 101°.
Apparently, the flaw in the Applesoft sine function for an argument that is very large in value is due to the
sine argument reduction algorithm. And, as previously mentioned, the cosine and the tangent
trigonometric functions are equally flawed since they are obtained by means of trigonometric identities that
are solely based on the Applesoft sine function. Therefore, it is vital that the engineer or the mathematician
is aware of all of the numerical limitations of the algorithms that are implemented in Applesoft and how
each function can affect the accuracy of Applesoft arithmetic. And, the engineer or the mathematician must
accommodate all of their complex floating-point variables, arrays, determinants, and inverse arrays for
these Applesoft arithmetic irregularities. The modified Applesoft eliminates most of these irregularities.

Applesoft Variables

Applesoft utilizes two areas of memory for numerical and character string variables that include the Simple
Variables and the Array Variables, or Simple/Array Variables, or SAVs for short. Figure 1 shows an
example Applesoft program that resides in memory beginning at memory address @x0801. In that figure,
Free Space exists because the Applesoft Program, its SAVs, and its Character String Pool do not exceed the
value that is stored in HIMEM minus @x08@1, the memory address where the Applesoft program and all other
regular Applesoft programs traditionally load into and reside in memory. Applesoft also utilizes a large
number of byte-pair memory locations in page-zero for its use. Many of these memory locations are to
store addresses in low/high byte order that can easily be used as pointers in memory management routines.
Even though DOS 4.5.08H is capable of loading an Applesoft program into any selected memory location,
DOS usually loads an Applesoft program into memory at address @x@80@1, which is the value that is found
in PRGTAB. Using the size of the Applesoft program, DOS calculates the end address of the Applesoft

program and saves that information in PRGEND. Initially, DOS sets VARTAB to PRGEND and Applesoft sets
ARYTAB and STREND to PRGEND and FRETOP to HIMEM.

Page-Zero Pointer
Applesoft Program
Addresses A 8
0x0000
PRGTAB — 0x67:0x68 | 0x0801
Applesoft
Program
PRGEND - OxAF:0xB0
VARTAB - 0x69:0x06A Simple
Variables
ARYTAB - 0@x6B:0x6C
Array
Variables
STREND - @x6D:0x6E
Free
Space
FRETOP - Ox6F:0x70
HIMEM - @0x73:0x74 Character
String Pool
OXFFFF

Figure 1. Example Applesoft Program Layout in Memory

When the Applesoft program begins to process its instructions, the program begins to create simple
variables that include floating-point variables, integer variables, and character string variables. These
variables reside in the Simple Variables area of memory as simple descriptors whose memory address is
found in VARTAB. The definition of the descriptors for the variables that comprise the Simple Variables is
shown in Table 1. As more and more Simple Variable descriptors are added by Applesoft, the Array
Variables area is pushed higher and higher up in memory that reduces the size of Free Space. Simple
Variable descriptors are always seven bytes in size, and depending upon the variable type, some of the
descriptor bytes may not even be used. Table 1 shows that floating-point numbers require all seven bytes

4

for the variable name, the exponent, and its 4-byte mantissa. Integer numbers require only four bytes for
the variable name and its value in high/low byte order, leaving the remaining three bytes initialized to 0.
Finally, simple character string variables require five bytes for the variable name, the 8-bit length of the
character string in bytes, and the memory address in low/high byte order where the character string
resides in memory, leaving the remaining two bytes initialized to @. Obviously, a simple character string
variable cannot contain more than 255 ASCII characters since the number of characters in the simple
character string variable is limited to a single 8-bit quantity. Applesoft programs should never define a
character string variable to contain more than 255 ASCII characters.

Variable Byte Definitions
Type Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
. . namel name2
Floating-point Mantissa Mantissa Mantissa Mantissa
+ +
Number A685CII A686CH Exponent Byte 1 Byte 2 Byte 3 Byte 4
namel name2 .
Numper | ASCH | -asen | GEC |G . . .
195 196
Simple namel name2 . .
Character | +Asci | -ascn | e o Low o Lheh 0 0
String 69 198 £
Table 1. Simple Variable Descriptor Definitions in Applesoft
Variable Byte Definitions
Type | Bytel | Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7 | Byte8 | Byte 9
et namel name?2 Low High Number of Size of Size of Size of Size of
" &P +ASCII | +ASCII | Byte Byte | Dimensions | KthDim | KthDim | K-1Dim | K-1 Dim
Tray 65 66 Offset | Offset K High Byte | Low Byte | High Byte | Low Byte
Integer namel name?2 Low High Number of Size of Size of Size of Size of
A g -ASCII -ASCII Byte Byte Dimensions | Kth Dim Kth Dim K-1 Dim K-1 Dim
Iray 195 196 Offset | Offset K High Byte | Low Byte | High Byte | Low Byte
Character namel name?2 Low High Number of Size of Size of Size of Size of
String +ASCII | -ASCIL Byte Byte Dimensions | Kth Dim Kth Dim K-1 Dim K-1 Dim
Array 69 198 Offset Offset K High Byte | Low Byte | High Byte | Low Byte

Table 2. Array Variable Descriptor Definitions in Applesoft

The definition of the descriptors for Applesoft Array Variables is shown in Table 2. As shown in Figure 1,
the start address of the Array Variables area of memory is found in ARYTAB and the end address of the Array
Variables is found in STREND. This area of memory contains single and multi-dimensioned Array Variable
descriptors for arrays of floating-point numbers, arrays of integer numbers, and arrays of character string
variables. Table 2 shows an example variable descriptor that has two dimensions. Successive Array
Element dimension sizes precede each other with the first-dimension size in high/low byte order always
coming last. The Array Variable descriptor grows in size as the number of dimensions increase in value.
The nominal size of an Array Variable descriptor is seven bytes for a single dimension array. The descriptor

5

increases in size by two additional bytes for each added dimension. Therefore, the dimension value that is
found in Byte 5 of the Array Variable descriptor becomes a critical piece of information that is used to
calculate where the Array Elements begin and where they end relative to the address of their Array Variable
descriptor. The maximum number of dimensions for an Array Variable descriptor is 255 since this variable
is limited to an 8-bit quantity. Applesoft limits the number of dimensions for an array to eighty-eight.

Element Byte Definitions
Type Bytel | Byte2 | Byte3 | Byted | Byte5
Flog::;f{)g;)mt Exponent Mantissa Mantissa Mantissa Mantissa
Element Byte 1 Byte 2 Byte 3 Byte 4
Integer .
Number High Low
Value Value
Element
Clée;rr?;ter String Low High
& Length Address Address
Element

Table 3. Single Array Element Descriptor Definitions in Applesoft

Bytes 3 and 4 of the Array Variable descriptor give the offset in bytes to the beginning of the next, if any,
Array Variable descriptor relative to the address in memory where this Array Variable descriptor is located.
The Array Elements that belong to an Array Variable descriptor begin immediately after the descriptor
whose descriptor size can easily be calculated knowing the value in Byte 5, or 5 + (value in Byte 5) * 2.
The definition of each Array Element for each type of Array Variable descriptor is shown in Table 3. These
Array Element definitions are essentially the same as the definitions for the respective Simple Variable
descriptors that are shown in Table 1 without including the name of the array variable. Obviously, the name
for all of the Array Elements is the same, and this name is found only in its Array Variable descriptor. The
Array Element for arrays of floating-point numbers is five bytes in size and it contains the exponent of the
floating-point number and its 4-byte mantissa. The Array Element for arrays of integer numbers is two
bytes in size and it contains its integer value in high/low byte order. The Array Element for arrays of
character string variables is three bytes in size and it contains the 8-bit length of the character string in bytes
and the memory address in low/high byte order where the character string resides in memory. It should be
apparent that all of the character string elements of a character string array do not necessarily have to contain
the same number of characters, but any single character string element cannot contain more than 255
characters since its string length variable is limited to a single 8-bit quantity. Applesoft programs should
never define a character string element to contain more than 255 ASCII characters.

Quite often an Applesoft program contains the text of some character string variable. As long as there is
no text operation on that character string variable such as A$ = A$ + B$, for example, the string pointer
address that is found in the Simple Variable or in the Array Element descriptor points to the actual character
string data that is within the memory contents of the Applesoft program. In order for this character string
variable or array element variable to be available, for example, to a Chained program, the actual character
string data must be relocated into the Character String Pool. A simple way to force this character string
relocation is to perform some menial data operation on that character string variable or that array element
variable, such as A$ = A$ + "" or A$(@) = A$(@) + "". This simple operation does nothing to the character

6

string A$ or to A$(@) except to cause the actual data of A$ or A$(@) to be copied from within the contents
of the Applesoft program into the contents of the Character String Pool.

The Character String Pool that is used in Applesoft to hold character string variables can create many side
effects after character string variables have been processed in multiple ways. Bit and pieces of old character
string data that have no descriptor as a result of this processing can clutter the Character String Pool. This
additional string data clutter reduces the size of the Free Space and this can have a direct effect on the
processing speed of many Applesoft string operations. When Free Space reaches a critical limit in size,
Applesoft automatically calls the GARBAG routine that attempts to clear out all of the character string data
that have no string descriptor. Many Garbage Collection algorithms have been previously published that
accomplish the same results as GARBAG in far less time, but there can be a number of caveats when using
some of these algorithms. For instance, normal Applesoft programs save all character string data in lower
ASCII where the MSB is clear for each character byte in the string. And, normal Applesoft programs never
allow more than one character string descriptor to point to the same character string data in memory.
Multiple character string variable and array element descriptors may each point to identical character string
data sets, but these identical sets of character string data must reside at different memory locations. Some
Garbage Collection algorithms depend upon these constraints. If either constraint is not found to be true, a
catastrophe will happen during the course of subsequent Applesoft processing! Of course, if the character
string data of an Applesoft program is kept normal and these constraints are observed, there will be no
subsequent processing problems. If assembly language routines, possible appendages to the Applesoft
program itself, or other code segments perform exotic manipulations to the character string descriptors or
to the contents of the Character String Pool, these constraints might very well be violated.

Applesoft Floating-Point Variables

Applesoft conducts all of it numerical processing, even for obvious integers such as those that are used in
FOR/NEXT loops, using only floating-point variables. Signed 16-bit integer variables and arrays are provided
in Applesoft, and an integer variable may be utilized in most Applesoft statements. Unlike other floating-
point number notations such as IEEE 754, the Applesoft exponent utilizes all eight bits for its value and it
utilizes the most significant bit in its mantissa for the sign bit, and if that bit is OFF, the respective floating-
point number is positive. The bias that is included in the exponent is utilized in order to represent very
large and very small numbers. As in other floating-point number notations, the mantissa utilizes an implicit
high-order one bit to yield a full 32-bit significand. An Applesoft floating-point number typically provides
a numerical range from 10738 to 1038 and it has, at most, nine digits of accuracy. When using floating-
point numbers in Applesoft, those numbers must be within this numerical range or Applesoft will flag an
error or simply convert the number to @. Applesoft understands scientific notation when a floating-point
number is either too small or too large to express that number in decimal form. The format of Applesoft
scientific notation is SD.FFFFFFFFESTT for an Applesoft floating-point number. Both the single digit
decimal number D and the double digit exponent TT utilize the sign bit S. If the floating-point number is
positive, no plus + sign is used before that single digit D. However, the sign of the exponent TT is always
expressed in Applesoft scientific notation whether the exponent is positive or negative. The letter E
separates the fractional part FFFFFFFF of decimal number D from its exponent TT. The fractional part
FFFFFFFF of decimal number D contains eight numerical digits at most. Applesoft does not identify
IMAGINARY floating-point numbers differently from REAL floating-point numbers. And, Applesoft does
not define or provide any resources for either double precision integer numbers or double precision floating-

point numbers whether they are REAL or IMAGINARY. The modified Applesoft always prefaces a small
floating-point number that is in decimal form with a @ unless scientific notation is used otherwise.

Integer numbers as large as 1,048,576 or 22° can be precisely expressed as an Applesoft floating-point
number. The Applesoft integer to floating-point and the floating-point to integer conversion routines are
designed to conduct these particular conversions without residual error. In fact, it is very straightforward
to convert an integer number into an Applesoft floating-point number. For example, take the decimal
number 937 and convert that number to hexadecimal, or @x3A9, and then to binary, or %001110101001.
Express that binary number into a mantissa of four bytes, or %00000000000000000000001110101001.
Count the number of zero-bits until the first one-bit is reached, or 22, which is @x16. Since the maximum
value for the floating-point exponent for 22 is @xA@, subtract the zero-bit count from @xAQ, or @xAQ - 0x16
= @x8A. Once the exponent is calculated, those first 22 zero-bits can be removed. That first one-bit that
was encountered when counting the number of zero-bits is called the implicit high-order one bit and the
sign bit is substituted for that implicit high-order one bit. In this example, the sign bit is positive, so that
first mantissa bit becomes a zero-bit. The resulting floating-point value becomes Ox8A6A400000. It is
easier to see the original integer, or %001110101001, when the entire floating-point number is expressed
as a complete binary number that contains a space character between each byte:

%10001010 01101010 01000000 0000VVO0 VOVVV0D

The reverse conversion of this floating-point number extracts the first bit of the mantissa as the sign bit and
replaces this bit as the implicit high-order one bit. The exponent is subtracted from @xA@ and the mantissa
is shifted to right that many bits as shown:

%10011010 00000000 00000000 00000011 10101001

The third and fourth bytes of the mantissa contain the integer value for the original decimal number 937.

Management of Applesoft Floating-Point Registers

Applesoft utilizes a number of floating-point registers in order to assist the various floating-point routines
that comprise all of the mathematical functions that are available in Applesoft. The primary Applesoft
floating-point register is FAC and the secondary floating-point register is ARG. Both of these floating-point
registers consist of five bytes where the first byte is used for its exponent and the next four bytes are used
for its mantissa. Both FAC and ARG each utilize an 8-bit guard byte. The guard byte for FAC is FACGUARD
and the guard byte for ARG is ARGGUARD. Both of these guard bytes are utilized in all four primary
mathematical functions, that is, in addition, in subtraction, in multiplication, and in division. FACGUARD is
utilized to hold the final guard byte value once the mathematical function is complete. The Applesoft
addition function uses FAC and ARG for the addends and the function puts their sum into FAC. The Applesoft
subtraction function uses ARG for the minuend and FAC for the subtrahend and the function puts their
difference into FAC. The Applesoft multiplication function uses ARG for the multiplicand and FAC for the
multiplier and the function puts their product into MULMANT which is a four-byte register that holds only the
floating-point mantissa. The Applesoft division function uses ARG for the dividend and FAC for the divisor
and the function puts the quotient into FAC. The exponents for both addition and subtraction are handled
by a common routine that normalizes their exponents to equality. The exponents for multiplication and for
division are handled by a different common routine that adds or subtracts the exponents.

8

Polynomial processing utilizes TEMP1 and TEMP2 which are also five-byte floating-point registers. The
Applesoft SINE, COSINE, ARCTANGENT, and exponential function all use polynomial processing. The
Applesoft TANGENT function utilizes TEMP3 in addition to the other two temporary floating-point registers.
TEMP3 is a six-byte floating-point register and its fifth mantissa byte is utilized for its 8-bit guard byte,
T3GUARD. The Applesoft square root function, or SQR requires TEMP1 and TEMP3. Polynomial processing
had limited usage for guard bytes since TEMP1 and TEMPZ do not have associated guard bytes. After careful
review of TEMP1 and TEMPZ utilization, I found that TEMP1 is used to hold the rounded user input value for
SQR, to obtain the next 5-byte polynomial value in polynomial processing, or to hold the rounded user input
range value for RND. TEMP2 is used to hold the initial X or X? term during active polynomial processing.
My review shows that mathematical accuracy would not benefit if TEMP1 utilized a guard byte. However,
mathematical accuracy in polynomial processing would definitely benefit if TEMP2 utilized a guard byte.
Since TEMPZ is utilized only in this single intensely mathematical processing function, I found that it was
possible to incorporate an 8-bit T2ZGUARD byte when the FAC register is copied to the TEMP2 register and
when the TEMP2 register is copied to the ARG register. The T2GUARD byte becomes a critical component in
maintaining the mathematical accuracy in polynomial processing in the modified Applesoft.

Memory Name Description
©OxDE23 FRMSTAK3 | Push FAC and FACGUARD onto the STACK; jump to (INDEX)
OxDE40 NOTMATH4 | Pull ARG, ARGGUARD, ARGSIGN from STACK; set FACSIGN and XORSIGN; load FACEXP
OxE3AF FNCDATA [Pull five numerical bytes from STACK into (FUNCNAM) indexed by Y-register
OxE9E3 LOADARG | Copy five bytes from (INDEX) into ARG; set ARGSIGN, XORSIGN, and ARGGUARD
OxEAEG COPYMZF | Copy four bytes from MULMANT into FACMANT; normalize the exponent
OxEAF9 LOADFAC [Copy five bytes from (INDEX) into FAC; set FACSIGN and FACGUARD
OxEB1E COPYF2T2 | Copy (TEMP2) into INDEX; copy FAC into (INDEX); set FACSIGN; leave FACGUARD alone
OxEB21 COPYF2T1 | Copy (TEMP1) into INDEX; copy FAC into (INDEX); set FACSIGN; leave FACGUARD alone
OxEB27 COPYF2FR | Copy (FORPNT) into INDEX; copy FAC into (INDEX); set FACSIGN; leave FACGUARD alone
OxEB2B COPYFAC | Call RNDUP; copy FAC into (INDEX); set FACSIGN; leave FACGUARD alone
OxEB53 COPYA2F | Copy ARGSIGN to FACSIGN; copy ARG to FAC using indexed loop; set FACGUARD
OxEB63 COPYF2A | Copy FACSIGN to ARGSIGN; copy FAC to ARG; set ARGGUARD
OxF1BA COPYF2T3 | Copy (TEMP3) into INDEX; call COPYFAC2, avoid RNDUP; copy FACGUARD to T3GUARD
OxF695 COPYT32A | Copy (TEMP3) into INDEX; call LOADARG; copy T3GUARD to ARGGUARD

Table 4. Routines That Copy Floating-Point Registers or Numbers

The first three floating-point data transfer routines that are shown in Table 4 are used to push FAC onto the
STACK, pull ARG from the STACK, or pull numerical data from the STACK and save that data to a specific
memory location as a floating-point number. These routines push or pull numerical data onto or from the
STACK byte by byte in order to affect the fastest data transfer rate at the expense of Applesoft space. The
FRMSTAK3 routine pushes the entire contents of the FAC register onto the STACK after RNDUP is called. I
modified this routine to push FACGUARD onto the STACK rather than call RNDUP. Its complement routine
NOTMATH4 transfers floating-point data that is on the STACK into the ARG register, and I also modified this
routine to pull ARGGUARD before it pulls ARGSIGN from the STACK. FNCDATA is a routine that pulls a
floating-point number from the STACK and copies that number to memory whose address resides in
FUNCNAM. And, in addition to those three routines, there are eleven routines that copy the contents of one

9

of the five floating-point registers to memory, or memory to one of the registers, or one register to another
register. Ten of these data transfer routines copy numerical data to or from a floating-point register byte by
byte in order to affect the fastest data transfer rate at the expense of Applesoft space. The COPYAZF data
transfer routine, however, favors Applesoft space at the expense of numerical data transfer rate and this
routine is only utilized by POWER. Actually, ADD uses COPYAZF in order to return the value that is in the
ARG register when the FAC register is @. I did unwind the COPYF2A data transfer routine that utilized an
indexed register loop because this routine is used by many functions. However, it was not necessary to set
the data transfer loop indexing register to its terminating value. Table 4 presents all of these floating-point
copy routines, their location in Applesoft, their names, and a brief description of their function in the
modified Applesoft.

Page Topic Description

oxC0o 1/0 Memory, video, and slot card management soft switches.
OxC1-0xC2 Monitor Support ROM Monitor input and 40/80-column output support routines.

0xC3 Video Output Claims @xC8:CF space; cannot be used by @xF8:FF routines.

0xC4 Interrupt Handler Apple //e configuration is captured; the interrupt handled; system is restored.

0xC5 STEP and TRACE Mini-assembler routines.
0xCo-0xC7 GARBAG; SWEET16 Several garbage collection routines and SWEET16 Metaprocessor.
OxC8-0xCE 40/80 column handlers |Routines to display 40 and 80 columns.

OxCF STEP and TRACE Mini-assembler routines.
0xD@-0xD3 Addresses and Names | Applesoft statement addresses, names, and error messages.
0xD4-0xD6 Interpreter Applesoft interpreter, restart, parser, tokenizer, memory management
0xD7-0xD8 Routines FOR, TRACE, RESTORE, STOP, END, CONT, LOAD, RUN routines
0xD9-0xDA Routines RUN, GOSUB, GOTO, RETURN, POP, DATA, REM, LET, PRINT routines
OxDB-0xDF Routines GET, INPUT, READ, NEXT, PDL, DIM routines
OxEQ-OxE6 Routines POS, DEF, STR$, GARBAG, CHR$, LEFT$, RIGHT$, MID$, LEN, ASC routines
OxE7-0OxEB Routines VAL, PEEK, POKE, WAIT, SUB, ADD, LN, MULT, DIV, SGN routines
OxEC-OxEF Routines ABS, INT, FPOUT, SQR, POWER, EXP, LOG, PI, RND, COS, SIN routines
OxFO-0xF1 Routines TAN, ATAN, CHRGET, COLDSTRT, CALL, IN, PR routines

OxF2 Routines PLOT, HLIN, VLIN, COLOR, VTAB, SPEED, TRACE, NOTRACE routines

OxF3 Routines INVERSE, FLASH, HIMEM, LOMEM, ONERR, RESUME, DEL, GR routines

OxF4 Routines TEXT, READ, HGR2, HGR, POSN, HRPLOT routines
OxF5-0xF6 Routines HLIN, DRAW, XDRAW routines

OxF7 Routines HCOLOR, HPLOT, ROT, SCALE, TITLE, 40/80 column patches, HTAB routine
OxF8-0OxFF ROM Monitor Modified ROM Monitor that supports 40/80 column display routines.

Table 5. General Layout of the CO:FF ROM

Introduction to Applesoft Source Code

The general layout of the Apple /e ROM, that is, the CXROM addition, the Applesoft interpreter, and the
ROM Monitor is shown in Table 5. The COLDSTRT routine that is shown in boldface in Table 5 appears to
complete Version 1.1 that Apple Computer purchased from Microsoft as Applesoft I, the 6502 BASIC

10

interpreter. The Applesoft statements that follow the COLDSTRT routine begin in the @xF2 page and they
handle the unique LORES and HIRES graphic commands which were provided by Randy Wigginton and
Cliff Huston. The Applesoft interpreter that was provided in the Enhanced Apple //e uses the last half of
the OxF7 page for patches that support 40-column and 80-column displays and to provide a correctly
functioning Applesoft HTAB statement. I have not changed the entry location address for any of the
Applesoft statements. What I have changed are the routines that are used by these Applesoft statements.

I approached this journey through Applesoft as I have done countless numbers of times when I have
explored, learned, and modified the software that has been written by other programmers or other software
engineers. I am a professional software engineer because I have made my living at developing software
products for several aerospace companies. And, I have written all of the software for those software
products in various assembly languages, Fortran, or in C language. I did restrict myself to only utilizing
ANSI C language because most of my software products were required to process data in real time. Some
of the computer platforms that I have utilized for my software products include the BBN Butterfly, SEL
Encore computers, SUN Microsystems workstations, and the SGI Origin 2000 and 3000 series of
mainframes. Several of my software products as well as an Origin 2000 were installed on the Raytheon
Multi-Program Testbed, or, the RMT which is a Boeing 727 that is used to fly on various sorties along with
various government sponsors. I consider myself more than well equipped to understand the 6502 assembly
language that was used to write the Applesoft interpreter. I am more than able to discern errors in the use
of the 6502 assembly language and in algorithm logic, and I can discern illogical software structure, order,
and format. Furthermore, I am fully capable of explaining the function of an Applesoft software algorithm.

I begin my journey through Applesoft with several goals in mind. First and foremost, I want to ensure that
each Applesoft mathematical function can produce the most reliable solution having at least ten digits of
accuracy even though only nine digits can be presented at any given time. In order to accomplish this goal,
I place a strong emphasis on utilizing guard bytes in every possible calculation and in every series of
calculations. I want to remove the rounding of a floating-point variable at all times during consecutive
calculations until that variable must be rounded before it is written to memory and presented to the user. |
want to add additional statements to the Applesoft language repertoire in order to increase the precision of
the Applesoft language. And, above all, I want to repair or to replace the ill-informed as well as the
uninformed software decisions that I found laced throughout the Applesoft language that contributes to the
generation of mathematical errors. Of course, the CA:FF ROM contains only so much real estate for
changes, for additions, and for improvements to its software routines. When any duplicated software logic
is uncovered, the possibilities to insert software changes, additions, and improvements into the Applesoft
language become more probable. That is when I become driven by excitement and eagerness to install new
modifications in order to deliver an Applesoft language that has far more accuracy. Without having any
explanations for the fabricated, concocted, and aberrant polynomials that are used for the processing of
Applesoft transcendental functions, these functions are particularly problematic even when many other
mathematical modifications are utilized. Perhaps better solutions can be found by others after having read
and studied the details of my journey through Applesoft.

The Applesoft Statements

The Applesoft language is designed around 107 commands which I designate as Applesoft statements.
These statements can be categorized into three main groups. The first category of Applesoft statements are
those that perform a particular function, like END or FOR or HCOLOR= or HIMEM:. These statements do not

11

require evaluating an expression that is enclosed by parenthesis. This first category of statements is called
the BASIC statements and I preface a B in front of each of their software labels. There are sixty-four BASIC
statements. The list of sixty-four two-byte fully qualified addresses for the software labels of the BASIC
statements begins the Applesoft source code at @xD@@@. The token numbers or identification numbers for
all Applesoft statements begin with the number 0x80@, that is, with numbers that have their most significant
bit set. All other ASCII data in the form of numbers and strings in an Applesoft program have their most
significant bit clear. In order to calculate the token number that is associated with each BASIC statement,
Applesoft takes the least significant byte of the BASIC address where the two-byte label address is found
where that statement is processed in memory, divides that BASIC address byte by two, and then adds 0x80.
For example, the Applesoft BASIC statement POKE is processed at @xE77A. That address, @xE77A, is found
in the list of two-byte BASIC addresses at @xD@72. Thus, the token number for POKE is @x72 / 2 + 0x8@ =
0xB9 or 185. The token numbers for the BASIC statements begin with @x80 and they end with @xBF.

The next category of statements is called the FUNCTION1 statements and I preface an F in front of each of
their software labels. There are twenty-two FUNCTION1 statements. The FUNCTIONI statements are those
Applesoft statements which contain an expression that has a numerical value and that expression is enclosed
by parenthesis. That numerical expression must be evaluated before Applesoft can process the statement.
The list of twenty-two two-byte fully qualified addresses for the software labels of the FUNCTION1
statements begins at @xD@80 which follows the two-byte addresses for the BASIC statements. Examples of
FUNCTION1 statements are SGN(), PDL(), and ASC(). In order to calculate the token number that is
associated with each FUNCTION1 statement, Applesoft takes the least significant byte of the FUNCTION1
address where the two-byte label address is found where the statement is processed in memory, divides that
address byte by two, and then adds @x92. For example, the software label address for the Applesoft
FUNCTIONI statement PEEK is @xE764. That address, @xE764, is found in the list of two-byte addresses at
0xDOAOQ and the token number for PEEK is OxAQ / 2 + 0x92 = OxE2 or 226. The token numbers for the
FUNCTION1 statements begin with @xD2 and they end with OxE7.

The last three statements are the FUNCTIONZ statements and they include the LEFT$, RIGHT$, and MID$
statements. These statements also contain an expression that is enclosed by parenthesis which must be
evaluated before Applesoft can process the statement. However, the expression for these statements are
more complex than the FUNCTION1 statements because these expressions contain two or three string
variables rather than a single numerical variable as found in the FUNCTION1 statements. The token number
for FUNCTIONZ statements is calculated in the same way as token number is calculated for FUNCTION1
statements. The token numbers for the FUNCTIONZ statements begin with @xE8 and they end with @xEA.
Applesoft token parsing happens to end with the FUNCTIONZ statements. The modified Applesoft, however,
contains two additional statements that follow the FUNCTIONZ statements and these two statements are
processed like FUNCTIONI statements. These two statements include the LN statement and the PI statement.

The Applesoft statement SCRN(is syntactically not a FUNCTION1 statement because it contains two
numerical expressions that are separated by a comma rather than a single numerical expression. And, the
SCRN(statement is syntactically not a FUNCTIONZ statement because its two expressions contain numerical
variables rather than string variables. The UNARY function at @xDF@C processes all FUNCTION1 and
FUNCTIONZ Applesoft statements, but UNARY extracts the SCRN(statement first with no further processing
in the unmodified Applesoft.

The last category of statements is called the Operator TAG statements and I preface an O in front of each
of their software labels. There are ten TAG statements. The TAG statements are those statements which
perform a mathematical operation or some sort of mathematical comparison. The list of their precedence
codes and their two-byte fully qualified addresses for the software labels of the TAG statements begins at

12

0xD@B6 in the modified Applesoft which follows the two-byte addresses for the FUNCTION statements.
Examples of TAG statements are +, AND, and <. The precedence code is the value that Applesoft uses in
order to determine the processing order for various variables and TAGs when Applesoft evaluates a complex
mathematical expression. The precedence codes range from @x46 for OR to @x7F for =. Applesoft extracts
the precedence code first and then it extracts the address bytes for the selected routine that processes that
TAG statement. The token numbers for the TAG statements begin with @xC8 and they end with @xD1.

The remaining eight Applesoft statements use the token numbers from @xC0 to @xC7. These statements
appear to be a group of catch-all statements that include FUNCTION-like statements and statements that are
ancillary to other Applesoft statements. For example, the statements TAB(and SPC(look very much like
FUNCTIONI statements, FN can only be used after it has been defined by DEF, and TO, THEN, AT, NOT, and
STEP must be used ancillary to other Applesoft statements. These Applesoft statements are not listed with
a two-byte fully qualified address because these statements are parsed while the Applesoft interpreter is
processing other Applesoft statements. These Applesoft statements are usually identified when and if
Applesoft would logically find their occurrence, utilize their occurrence, or require their occurrence.

I have previously stated that I have added two additional statements to the Applesoft language repertoire
which includes the PI statement with token number OXEB and the LN statement with token number @xEC.
The first statement that [added to Applesoft is the PI statement, and this statement simply loads the FAC
floating-point register as well as its guard byte FACGUARD with the 48-bit value of . The second statement
that I added to Applesoft is the LN statement. The unmodified Applesoft calculates the natural logarithm
for the Applesoft LOG statement which is somewhat of a misnomer. In engineering, especially in Electrical
Engineering, the logarithm of a number is the exponent to which a base must be raised in order to produce
that number. Therefore, in order to differentiate the natural logarithm which is based on e and the logarithm
which is based on 10, LN is used for the natural logarithm and LOG is used for the base-10 logarithm. In the
modified Applesoft, the LN statement produces the same values that the LOG statement produces for the
same arguments in the unmodified Applesoft. In the modified Applesoft, the LOG statement multiplies what
the LN statement produces by the floating-point variable base-10 LOG (e). I added both of the two-byte
fully qualified label addresses for the new PI and LN Applesoft statements at @xDOB2 and @xD@B4,
respectively, which comes after the address for MID$ and before the Operator TAG addresses. Adding
these two addresses changes the location for BASNAME by four bytes which is where all of the Applesoft
statement names are listed in DCI format.

All Applesoft statements are reserved words for the Applesoft interpreter. For example, if one should define
a variable such as GR = 32, the Applesoft interpreter will first initiate LORES graphics and then issue a
Syntax Error in the offending line where the GR statement is incorrectly used for the name of a variable.
I find it interesting that the Applesoft language developers thought that it was necessary to add particular
suffixes to some Applesoft statements, suffixes like =, :, and (. I can understand, perhaps, why $ was
added to the string processing statements in order to identify their intention and ultimate purpose. I suppose
not having to evaluate the = TAG followed by a parameter does reduce some little processing, so why not
use = rather than : for HIMEM: and LOMEM:? The CHKOPNP routine at @xDEBB that checks for an open
parenthesis is already in place, so why add the open parenthesis to TAB(, SPC(, and SCRN(and not to all of
the FUNCTION statements or none of the FUNCTION statements? I imagine that each of the many Applesoft
language developers had their own reasoning and their own rationale for the ownership of the various
routines that processed statements that were under their direction, and even control over the statement
name itself. There might have even existed a statement playbook that went so far as to already spell out
the characters that are used for each Applesoft statement. Certainly, how much thought was given to how
these naming peculiarities might affect the overall development of the Applesoft interpreter? I do find it
interesting when I conjure up possible explanations for some of these very awkward statement names.

13

Disabling an Applesoft statement does not remove the address requirement for some sort of alternate
processing that must always be assigned to that token number. Applesoft programs that were previously
developed have already been tokenized using an unmodified Applesoft, that is, the Applesoft statements
have already been converted to their assigned token numbers. These programs are intended to execute in
their tokenized form at any time and on any Apple][computer. Thus, disabling an Applesoft token number
that is assigned to an Applesoft statement consists of two tasks: substituting another name for the Applesoft
statement in BASNAME in order to prevent the use of that token number and substituting a different software
routine for that token number if it should be parsed in an Applesoft program. Clearly, listing an Applesoft
program using a modified Applesoft that has disabled certain token numbers would not produce a
meaningful version of that program. And, when executed, that program would certainly not produce many
of the intended results. It is simply not possible to incorporate new functionality into a space that has a
fixed size without discarding something that is less desirable. I have chosen to discard all of the cassette
recorder Applesoft write statements and some of the cassette recorder Applesoft read statements. The list
of Applesoft statements that I have discarded include SHLOAD, RECALL, STORE, and SAVE, and their
respective token numbers are @x9A, OxA7, OxA8, and @xB6. I have chosen to only retain the cassette
recorder Applesoft read statements LOAD and RUN in order to support Insta-Disk and c2¢ processing. These
two magnificent routines, Insta-Disk and c2¢ processing, were both designed and developed by Egan Ford.
Refer to my book DOS 4.5 Volume and File Disk Management System Second Edition for a detailed
discussion on Insta-Disk software, Insta-Disk disk images, and the c2¢ C language software that creates the
Insta-Disk disk images. The SHLOAD statement has become a DOS 4.5.08H command and this command
also includes several options. The DOS SHLOAD command provides the ability to load the data of a SHAPE
table from a diskette into memory for the purpose of drawing HIRES shapes. I have also developed the
companion SHSAVE command for DOS 4.5.08H, and this command provides the ability to save the data of
a SHAPE table onto a diskette. See Appendix D for using the DOS SHSAVE and the DOS SHLOAD commands.

BASNAME begins at @xD@D4 in the modified Applesoft. This is where the Applesoft interpreter begins its
search for every ASCII string that is not enclosed within double quotes when the interpreter is tokenizing
an input line of Applesoft. When an ASCII string is found within this table, that string is replaced by the
number that resides in a statement counter before that line of Applesoft is inserted into the Applesoft
program by virtue of its given line number. Certainly, in order to accomplish any of the goals set forth in
this Applesoft journey, additional Applesoft space must be found or created. In concert with finding this
space is the desire to disable specific Applesoft statements. The GR command happens to occur early in
BASNAME and this command has only two characters. It is the perfect replacement statement for SHLOAD,
then RECALL and STORE, and finally SAVE. While the Applesoft interpreter is scanning BASNAME, these
four statements will never be found and tokenized and, therefore, they are disabled in the modified
Applesoft. If an Applesoft program is found to contain any of the token numbers for these disabled
statements, the GR statement will be processed using the software routine that is assigned to that token
number. In the modified Applesoft, the address for IORTS or @xFF58 is used to replace the Applesoft
processing and label addresses for SHLOAD at @xD@34, RECALL at @xD@4E, STORE at @xD@50, and SAVE at
OxDO6E. When the Applesoft interpreter encounters the token number for these Applesoft statements,
Applesoft will simply process an RTS instruction and return to the Applesoft program to fetch the next
Applesoft statement or issue a Syntax Error in <nn> if an expression is included with the GR statement.

BASNAME also includes the names of the two new Applesoft statements that I added in DCI format at @xD256
and @xD258, respectively. BASNAME now ends at @xD25A with a terminating NULL byte. In the unmodified
Applesoft, BASNAME ends at @xD260. With these five extra bytes and changing “REDIM’D ARRAY” to
“Redefined Array”, all contractions can be removed in the list of error messages that begins at @xD25B
with MESGO1 and ends with MESG20 and still leave three extra bytes remaining. I have also changed the

14

error messages to include some lower case characters that assist in making the error messages far more
readable in my opinion since the Apple //e can display lower case characters. I have never liked the ?
prompt character that Applesoft uses when Applesoft is requesting input data or when Applesoft is printing
an error message. This is my opportunity to change the prompt character to > in OUTPROMT at @xDB56. I
also modified MESG21 at @xDCDF and MESG22 at @xDCEF to print the > character rather than the ? character
for those two error messages. These are the only three locations that need to be changed in order to utilize
a less-offensive Applesoft prompt character. To further assist in making error messages more readable, [
have modified locations PRLINUM at @xD431 and PRTMSG19 at @xED@A to print additional carriage returns.

The Applesoft Interpreter

The Applesoft interpreter is a collection of Applesoft statements, their routines, and other functions that
manage an Applesoft program. The interpreter is used to construct an Applesoft program in memory,
initialize that program, and execute Applesoft statements, ROM Monitor routines, and external assembly
language routines. The various Applesoft statements that assist the interpreter to manage Applesoft
processing and Applesoft program flow are part of the Applesoft interpreter. Applesoft is only generally
divided into its collection of statements that assist the Applesoft interpreter, statements that manage string
and numeric variables, statements that perform floating-point arithmetic operations, statements that perform
transcendental arithmetic operations, Applesoft initialization and miscellaneous functions, and statements
that manage the various LORES and HIRES graphic routines. The following is a collection of Applesoft
statements and their routines that assist the processing and the capabilities of the Applesoft interpreter.

The Applesoft interpreter begins with the GTFORPNT routine three bytes earlier at @©xD352 than in the
unmodified Applesoft. This routine is utilized by the FOR and NEXT Applesoft statements. Each FOR/NEXT
construction is called a frame and GTFORPNT scans through the STACK for the frame whose address for its
current iteration number matches the address that is currently in the FORPNT variable. If the addresses do
not match, GTFORPNT resets its pointer to check the previous frame which is twenty bytes higher on the
STACK. If the MSB in FORPNT is zero, then the address for the current iteration number is simply copied
to FORPNT. This logic takes care of the two cases when NEXT specifies a variable name or not, respectively.
In the unmodified Applesoft, when NEXT does not specify a variable name, the logic passes from the first
half of GTFORPNT into the second half of GTFORPNT simply to set the processor Z status to TRUE. Of course,
the code is more condensed when using this logic, but the processing time is needlessly lengthened for
every single iteration of every single FOR/NEXT frame. Those three extra bytes up front to GTFORPNT are
used to stop the logic of the first half of GTFORPNT needlessly passing into the logic of the second half of
GTFORPNT, and it forces the processor to set the Z status to TRUE and immediately return to the caller.

The next routine is the BLTU routine or Block Transfer Utility and it begins at @xD393 which is the same
address for BLTU in the unmodified Applesoft. BLTU is designed to be a negative copy routine that copies
data from the end of a program to some higher location in memory. This method of copying data is
necessary when a line of Applesoft is inserted somewhere in the middle of a program. The end of the
program needs to be copied higher in memory and backwards, that is, from a higher address to a lower
address such that the copy process does not overwrite the program. As in all negative copy routines, even
the routine I designed for the DOS 4.5 CHAIN command, the routine can appear unwieldy and cumbersome.

A FOR/NEXT frame consists of twenty bytes as previously mentioned, and Applesoft must always verify that
the STACK has enough room to add another frame. This verification check is performed by CKSTKSIZ at

15

OxD3D6. A value, Ox@A for FOR, @x@3 for GOSUB, or @x@1 for an expression evaluation is doubled by
CKSTKSIZ and added to @x36, and that sum is compared to the current stack pointer. The ASL instruction
that is used to double the entry value to CKSTKSIZ also serves the need to ensure that the C-flag is clear
before the addition is performed. It seems that @x36 is a rather generous value for STACK headroom and
some may consider reducing this value in order to allow a deeper nesting of FOR/NEXT loops or nested
GOSUBs. Another verification check routine follows CKSTKSIZ at @xD3E3 that ensures that the end of the
Applesoft array variable descriptors given by STREND do not overflow into the beginning of the Character
String Pool given by FRETOP. If the CKSTRSIZ routine detects this situation, it protects and copies FRETOP
and the page-zero locations @x94:9C to the STACK, calls GARBAG, and then restores FRETOP and the @x94:9C
page-zero locations. If GARBAG is unsuccessful in separating STREND and FRETOP sufficiently, the Out of
Memory error is posted as it is for CKSTKSIZ when the STACK has insufficient memory.

All error messages in Applesoft are printed by the PRTERR routine at @xD412. Applesoft is aware of only
two modes of operation: Direct mode and Running mode. Obviously, if an Applesoft program is processing
Applesoft statements, then Running mode is in operation and this mode can easily be detected by looking
at the MSB of the variable CURLIN+1, or the current line number that is being processed. Otherwise,
Applesoft ensures that CURLIN+1 is always initialized to @xFF when Applesoft is not processing Applesoft
statements and Direct mode is in operation. Another flag that is maintained by Applesoft is ERRFLG. DOS
4.5.08H knows about this flag as the ASONERR flag. When an Applesoft program uses the Applesoft ONERR
statement, Applesoft sets the MSB in ERRFLG and performs other housekeeping chores. If the MSB in
ERRFLG is set, then PRTERR transfers the error management to HANDLERR at @xF2E9. Otherwise, PRTERR
happily prints the appointed error message. If CURLIN+1 is not equal to @xFF, then PRTERR uses PRTMSG19
at @xEDOA to print the line number in which the error occurred because Applesoft is in Running mode.
PRTERR concludes by printing an additional carriage return. I have modified the PRTERR routine along with
developing a new routine called PRTMSG19 which resides just before LINEPRT at @xED18. The purpose of
these modifications is to clearly show the Applesoft error message by using carriage returns before and
after the error message. PRTERR falls directly into the Applesoft RESTART routine.

DOS 4.5.08H initializes its WARMADR pointer to the address for ASROMWRM which is also the RESTART routine
in Applesoft at @xD43C. This is the routine where the prompt character] is printed to the screen and the
page-zero pointers that are shown in Figure | are initialized. Applesoft programs are also developed using
this routine along with the resources of BLTU. Immediately following RESTART is the ASENTER routine at
@xD4F2 which is the entry location for the real and true Applesoft Interpreter. DOS 4.5.08H initializes its
RESETADR pointer to the address for ASROMRST which is also the address for ASENTER. ASENTER clears all
variables and recalculates all of the page-zero pointer addresses that are shown in Figure 1.

The INLIN routine at @xD52C removes the PROMPT character, reads the Applesoft command line, stores the
input characters into INPUT, and clears the MSB of all entered data. INLIN also terminates data input after
OxEF or 239 characters have been entered. I was able to easily accelerate this routine and reduce it by two
bytes. I also removed the next routine, the INCHR routine which is completely unnecessary. INCHR was
only used by the ISCNTLC routine at @xD858. Eight free bytes are now available at @xD551. The PARSINPT
routine at @xD559 parses and tokenizes the data in INPUT for RESTART. This is a very lengthy and complex
routine, and PARSINPT shows much of the brilliance of the Applesoft developers. PARSINPT initializes a
pointer with the base address of BASNAME and I was surprised that TOKNCNTR was initialized with 0x00 at
@xD59A and not with @x8@ which is the first Applesoft token number. Several ambiguities in the Applesoft
lexicon are worked out at @xD5B8 using tedious character comparisons when the token number is initially
thought to be @xC5 for the Applesoft AT statement. Parsing continues until End of Line, a NULL byte, or
End of Statement, that is, a : byte, is found.

16

A line of Applesoft begins with a line number followed by an Applesoft statement which may, for example,
be followed by one or more Applesoft statements, variables, expressions, equations, and ASCII text that is
between quotation marks. Every line of Applesoft is precisely constructed using an exact format and
syntax. That syntax is used to build every line of Applesoft using two bytes for the fully qualified address
in low/high byte order for the next line of Applesoft, two bytes for the line number in low/high byte order,
up to 239 bytes for the Applesoft, and a terminating NULL byte. This format is crucial to the FNDLIN routine
at @xD61A when it searches an Applesoft program for a particular line number. The routines RESTART,
LIST, ASROMSET, and DEL use LINNUM when they call FNDLIN in order to search an Applesoft program for
that specific line number. FNDLIN utilizes this syntax for every line of Applesoft it processes and it can
easily skip through an Applesoft program while searching for a specific line number. Because the syntax
of a line of Applesoft does not include the two-byte address for the previous line of Applesoft, Applesoft
can only search forward and never backward through an Applesoft program.

The routine for the first Applesoft statement to be processed by the Applesoft interpreter is for NEW at
0xD649. Many of the BASIC statements like NEW begin with checking the state of the Z-flag. If the Z-
flag is clear, it indicates that some stray character is included with the NEW statement, then NEW simply
does nothing, yet the Applesoft interpret will issue a Syntax error for that stray character, whatever it is.
NEW as well as the Applesoft COLDSTRT initialization routine at @xF127 both utilize the SCRTCH routine at
0xD64B in order to initialize the page-zero pointers that are shown in Figure 1. Whether NEW is issued on
the Apple Command Line or if NEW appears in an Applesoft program, NEW simply falls into SCRTCH.
SCRTCH falls immediately into the SETPTRS routine or ASROMCLR at @xD665 in order to finish page-zero
pointer initialization. DOS 4.5.08H calls ASROMCLR after DOS has moved all of the Applesoft variable and
array descriptor addresses to their new memory location on behalf of DOS CHAIN, and DOS calls ASROMCLR
before DOS enters ASROMNEW processing at @xD7D2 on behalf of DOS RUN. SETPTRS bypasses the
Applesoft CLEAR statement entry and falls into the CLEARC routine at @xD66C, and CLEARC falls into the
STKINIT routine. The Applesoft CLEAR statement entry at @xD66A, like the NEW statement entry, begins its
processing by checking the state of the Z-flag, and if the Z-flag is clear, then CLEAR does nothing and it
lets the Applesoft interpreter handle whatever stray characters it finds. Otherwise, CLEAR simply falls into
CLEARC in order to initialize FRETOP, ARYTAB, and STREND.

I have already noted that Applesoft is heavily dependent on page-zero variables, yet page-zero is hardly
enough memory for the processing demands of Applesoft. Thus, Applesoft is also heavily dependent on
STACK memory and Applesoft routinely pushes floating point variables, addresses, pointers, and data onto
the STACK and pulls those variables and addresses from the STACK for every iteration of a FOR/NEXT frame
or for a defined function as two examples. In order to keep Applesoft from losing complete control of the
STACK with possible overruns or overflows, STKINIT at @xD683 is where Applesoft controls the start of
the STACK and initializes its pointer to @xF8. This pointer initialization, of course, plays havoc with DOS
and DOS simply cannot call ASROMCLR and expect to find its return address still available on the STACK.
Obviously, I have written into DOS 4.5.08H an adequate solution that presets the STACK pointer to @xFA in
order to circumvent this unfortunate situation specifically for the DOS CHAIN command. Once SETPTRS
processing is complete, an Applesoft program is nearly ready to begin processing its Applesoft statements.
The small routine that follows STKINIT is the STXTPTR routine at @xD697 and STXTPTR is called by
SETPTRS to simply copy the address that is in PRGTAB to TXTPTR decremented.

The Applesoft LIST statement begins at @xD6AS and it is a lengthy and somewhat complex routine. The
six assembly language commands that begin LIST processing allow for the use of the — and , delimiters to
control some of the behavior of LIST. When Applesoft tokenizes an input line of Applesoft and before
adding that tokenized line into an Applesoft program, the Applesoft interpreter removes all unnecessary
space characters during that process in order to condense the total size of the Applesoft program. However,

17

when LIST displays those program lines of Applesoft to the screen or to any output device such as a printer,
the Applesoft LIST statement inserts a variety number of space characters according to its own processing
decisions. Some of those decisions can be controlled by adjusting WDWDTH. If a CTRL-C character is typed
while LIST is displaying data, LIST will be interrupted and the Break message will be printed to the screen.
I modified LIST and removed the useless NOP command at @xD7@8 and I replaced the printing of the @x@D
character at @xD724 with a call to PRTCR at @xDB5@, a new routine which I added to OUTCHR at @xDB58.
LIST is an excellent example of a routine which embeds another routine within its processing. Whether
the GETCHR routine is utilized by other routines or not does not condone this programming style in my
opinion. This practice appears rampant throughout the Applesoft interpreter and I find it very disturbing.
There is no reason whatsoever why GETCHR cannot be placed outside of LIST processing at @xD758.

The Applesoft FOR statement processing begins at @xD766 and this routine initializes the SUBFLG flag with
the value of @x80@ in order to disable the use of array variables with the FOR statement. This routine pushes
twenty bytes onto the STACK after calling CKSTKSIZ in order to verify that the STACK still has enough room
for another FOR/NEXT frame. Those twenty bytes consist of two bytes for the TXTPTR of the next Applesoft
statement (TXTPTR pushed first), two bytes for the current line number (CURLIN+1 pushed first), six bytes
for the initial or the current value of the FOR variable as a floating-point number (FACUARD pushed first),
one byte for the sign of the STEP value whether or not STEP is included, six bytes for the value of the STEP
variable as a floating-point number whether or not STEP is included (FACUARD pushed first), two bytes from
the FORPNT variable that is the address of the FOR variable that is stored within VARTAB (FORPNT+1 pushed
first), and one byte for the token identification number of the FOR statement or @x81 in order for GTFORPNT
to easily identify this FOR/NEXT frame on the STACK. The unmodified Applesoft pushes eighteen bytes onto
the STACK because FACGUARD is not included with the floating-point value of the FOR variable and for the
floating-point value of the STEP variable. FOR processing utilizes the FRMSTAK3 routine at @xDEZ23 in order
to push the floating-point value of the FOR variable onto the STACK and to automatically enter STEP
processing by means of an indirect jump. STEP processing utilizes the FRMSTAKZ routine at @xDE15 in
order to push the sign of the STEP value as well as the floating-point value of the STEP variable onto the
STACK. The Applesoft STEP statement processing immediately follows the FOR statement processing at
OxD7AF. Both FOR processing and STEP processing along with the processing of FRMSTAK3 and FRMSTAK2
are absolutely beautiful implementations of two Applesoft statements and their ancillary routines. I am
astounded in how clever all of these routines are designed. STEP processing falls into the NEWSTT routine.

Both the DOS RUN and the DOS CHAIN commands in DOS 4.5.08H enter the Applesoft ASROMNEW or
NEWSTT routine at @xD7D2. This routine is also used to process a FOR/NEXT frame, an input line of
Applesoft in Direct mode after the interpreter has parsed and tokenize the Applesoft statements in that
Applesoft line at @xD569, LIST at @xD726, TRACE at @xD823, GOSUB at @xD93B, NEXT at @xDD49,
HANDLERR at @xF315, and RESUME at @xF32B. NEWSTT falls into the DOTRACE routine at @xD8@5 which
prints a # followed by the line number of the Applesoft statement as that statement is processed when the
MSB of the TRACEFLG flag is set. DOTRACE returns to the top of the NEWSTT routine in order to process the
next Applesoft statement. Thus, the Applesoft interpreter loops using these two routines while checking
for a CTRL-C in NEWSTT and processing each Applesoft statement using the DOSTAMT routine in DOTRACE.

The Applesoft DOSTAMT routine at @xD828 follows DOTRACE. DOSTAMT only processes the sixty-four BASIC
statements using the token number of the BASIC statement as an index to BASADDR for the address of the
routine that processes that BASIC statement. The routine address is always found decremented and
DOSTAMT pushes that address onto the STACK and jumps to the CHRGET routine. As soon as the CHRGET
routine issues its RTS instruction, the routine for the designated statement will be entered immediately. The
CHRGET routine looks ahead one character and it clears the C-flag if that character is a number, otherwise
CHRGET sets the C-flag. What is more interesting is that CHRGOT sets the Z-flag if that character is a
18

colon :, that is, an End of Statement marker. The Applesoft RESTORE statement at @xD849 follows
DOSTAMT. RESTORE statement processing simply sets DATPTR to the beginning of the Applesoft program,
that is, whatever address that is found in PRGTAB is used to initialize DATPTR. The ISCNTLC routine at
0xD858 follows the RESTORE routine, and I modified this routine in order to remove its dependence on the
INCHR routine which I removed as completely unnecessary. If the ISCNTLC routine captures a control-
C input, the routine preloads the X-register with ERROR. 2 or @xFF in case ERRFLG is found to be TRUE
in the ASROMERR routine. The ASROMERR routine at @xD865 follows ISCNTLC and the address of this routine
is used by DOS 4.5.08H in order to initialize its ERRORADR vector. When the DOS ASONERR flag or
Applesoft ERRFLG flag is armed, that is, when its MSB is set and a DOS error occurs, DOS enters ASROMERR
by means of ERRORADR. I modified the ASROMERR routine since INCHR is no longer available to strip the
MSB from whatever keyboard character is captured by ISCNTLC. I moved and placed the jump to
HANDLERR at @xD8BO if ERRFLG (or ASONERR) is armed so that the Applesoft STOP statement can still reside
at @xD86E and the Applesoft END statement can follow at @xD87@. The END statement processing uses the
C-flag to either jump to RESTART if the flag is clear or it prints the Break error message if the flag is set.
The Applesoft CONT statement follows the END statement processing at @xD896, and it simply restores
TXTPTR and CURLIN, the current line number, from TEXTPTR and OLDLIN, respectively.

The Applesoft SAVE statement is found at @xD8B®@ in the unmodified Applesoft, and SAVE uses twenty-five
bytes of memory. I removed the SAVE statement as I previously explained and I installed the DOHANDLR
jump instruction for HANDLERR processing, the PULL3A routine at @xD8B3 for Applesoft POP statement
processing, and the RDBYTE routine at @xD8BB in this available space. The Applesoft LOAD statement is
still found at @xD8C9 and I use that Applesoft statement primarily for c¢2¢ processing. This statement uses
the CXREAD routine to read an Applesoft program into memory at PRGTAB for LINNUM number of bytes. If
the RUNFLAG flag is armed, LOAD statement processing transfers to the Applesoft RUN statement processing
in order to enter the SETPTRS routine. Otherwise, LOAD statement processing enters the ASENTER routine,
that is, the Applesoft interpreter. LOAD processing now incorporates the VARTIO routine directly and it
discards the PROGIO routine as in the unmodified Applesoft since the Applesoft SAVE statement is removed.
This allows the addition of the RDZBIT routine at @xD8FF that reads two transitions of the audio waveform
for the RDBYTE routine and for the CXREAD routine. In operation, the RDBYTE routine requires eight calls to
the RDZBIT routine in order to read a full 8-bit byte of audio data. The Applesoft RUN statement follows
RDZBIT at @xD912 and RUN statement processing runs the Applesoft program that is currently in memory
either at the top of the program or at a particular line number using the GOSUBZ entry point at @xD935.

The Applesoft GOSUB statement is processed at @xD921 and it pushes seven bytes onto the STACK. These
seven bytes include two bytes for the NEWSTT return address, two bytes for TXTPTR, two bytes for CURLIN,
and one byte for the GOSUB token identification number @xB@. GOSUB uses the GOTO statement processing
to setup the TXTPTR from LINNUM and then GOSUB enters the NEWSTT routine in order to process this
statement using the values that have been pushed onto the STACK. The Applesoft GOTO statement processing
is conveniently placed after GOSUB processing at @xD93E. The second half of GOTO processing is called
ASROMSET and this routine resides at @xD955. DOS 4.5.08H uses ASROMSET in order to establish the starting
line number for the DOS RUN or for the DOS CHAIN command as long as that line number exists in the
Applesoft program that currently resides in memory. An Undefined Statement error is written to the
screen if that line number cannot be found in the resident Applesoft program.

The Applesoft POP statement and the Applesoft RETURN statement are both processed at @9xD96B. A glaring
Applesoft bug occurs in this processing when Applesoft initializes FORPNT with #NEGONE in the unmodified
Applesoft. Obviously, FORPNT+1 must be initialized with #NEGONE prior to the call to GTFORPNT otherwise
POP would not be able to cancel a FOR/NEXT frame whose data has been pushed onto the STACK. POP

19

processing falls into the processing for the Applesoft DATA statement at @xD995 which skips to the next
Applesoft colon : or the End of Line which is demarcated by a NULL byte in Applesoft. The routine that
the DATA statement uses to skip ahead to the next Applesoft colon : or End of Line is the DATSCAN routine
at @xD9A3, and DATSCAN directly follows DATA processing. The Applesoft IF statement is processed next
at @xDI9(C9 and after its expression is evaluated, the IF statement processes a GOTO if that statement if found
next or the IF statement syntactically checks for an Applesoft THEN statement before it processes the GOTO.
Or, the IF statement simply processes the next Applesoft statement as part of the Applesoft REM statement
processing at @xDODC. The REM statement also uses DATSCAN in order to scan ahead to the next Applesoft
colon : or End of Line. The following Applesoft statement ON at @xDIEC operates in many similar ways
to the IF statement by checking for a following GOSUB statement or a following GOTO statement.

The Applesoft LINGET routine at @xDAQC utilizes some rather dangerous logic that can cause a potential
catastrophic jump to @xD922 whenever LINNUM contains a value that is between 437,760 and 440,319 or
OxABQO and OxABFF. LINGET converts an Applesoft program line number into a 16-bit integer. The
maximum Applesoft line number is 25599 and LINGET tests for any line number value that is greater than
25600 or 0x6400 However, if the most significant byte that is in LINNUM+1 happens to be exactly @xAB,
the unmodified Applesoft will compare that value to the value of the GOTO token number which happens to
be also @xAB, find that they are equal, and begin felonious processing at @©xDIF8 on behalf of LINGET. The
Applesoft language programmer that coded the LINGET routine was far too lazy to extend the branch at
OxDA1E to @xD981 where the branch should have been directed to in the first place. That branch is @x9D
bytes in size and it is not possible for that branch to take place, of course. In the modified Applesoft, I
moved the PULL3A routine from @xD9C5 to @xD8B3 and I moved the SY.ERRZ jump instruction from
0xD981 to @xDIC5. Now, the branch instruction at @xDALE for the comparison of LINNUM+1 and /6400 is
only @x5B bytes away and well within the reach of the SY.ERRZ label. The Wikipedia 100,000 entry is now
solved and no longer an issue in the modified Applesoft.

The Applesoft LET statement at @xDA46 allows one to assign an Applesoft expression to an Applesoft
variable whether that variable is a real variable, an integer variable, or a string variable. If the variable is
an integer, the variable is rounded, converted to an integer, and saved using FORPNT. If the variable is a
real variable, the FAC floating-point register is copied using FORPNT. And, if the variable is a string variable,
the LET statement processing falls into the PUTSTR string routine at @xDA7B in order to create and install a
string descriptor at the address that is in FACMANT+2 and FACMANT+3. The COPYSTR routine at @xDAB7
discards any temporary string descriptor and it copies the string from its current location in memory into
the Character String Pool for safe keeping.

The Applesoft PRINT statement at @xDADS5 follows the processing for COPYSTR. The PRINT statement
handles the Applesoft TAB and SPC statements as well as evaluating all expressions and converting
numerical values into ASCII text strings. I did slightly modify the PRINT statement processing by removing
the useless CLC instruction at @xDAE4, I changed the maximum line length from 24 to 32 at @xDAFF, and I
branched to a newly added error handler for a Syntax error. The LINEQOUT routine at @xDB38 calls the
FPOUT routine in order to convert a floating-point number into a printable numerical string. The STROUT
routine at @xDB3B uses the STRLIT routine to build a temporary string descriptor for the string that is pointed
to by (A,Y) and it terminates the temporary string by looking for a quotation mark or a NULL byte. That
temporary string is output to the screen by the following routine STRPRT at @xDB3E. STRPRT contains three
useless lines of assembly instructions and the routine is coded illogically. This routine requires 26 bytes in
the unmodified Applesoft and I only require 18 bytes for its complete, correct, and now beautiful
implementation. In the unmodified Applesoft, a space character, the Applesoft prompt character, and any
other characters that need to be output to the screen is handled by the routines OUTSPC at @xDB57, OUTPROMT
at @xDB5A, and OUTCHR at @xDB5C, respectively. Throughout the interpreter, I found that the carriage return
20

was output via OUTCHR at least twice. Since I still had a few available bytes after modifying STRPRT, I
added the PRTCR routine at @xDB50@ that outputs a carriage return and I modified those instances where I
could substitute PRTCR in place of the previous instructions. Now, the OUTSPC routine resides at @xDB53,
the OUTPROMT routine resides at @xDB56, and the OUTCHR routine resides at @xDB58. The OUTCHR routine
ORs the value in FLASHBYT to all ASCII characters that are greater than @xA@ in order to flash characters if
FLASHBYT contains the value of @x40, otherwise FLASHBYT contains @x@@ for normal characters. More
importantly, the OUTCHR routine implements a call to WAIT at @xFCA8 using the value that is found in
SPEEDBYT. In the unmodified Applesoft, the OUTCHR routine always calls WAIT. If the value in SPEEDBYT
is equal to @x@1, the smallest value possible in the unmodified Applesoft, each displayed character is
delayed by 29 clock cycles which is around 28 microseconds. The equation for calculating the delay that
is based on the SPEEDBYT value in the A-register by WAIT is as follows:

Delay = 2.5 * A2 + 13.5 * A + 13 cycles

The clock in the Apple][series of computers is set to provide an average rate of 1,020,484 cycles/second.
The calculations that arrive at this value are found in my book DOS 4.5 Volume and File Disk Management
System Second Edition. In the modified Applesoft, I changed the logic in OUTCHR to bypass the call to WAIT
if the value in SPEEDBYT is equal to @x00, otherwise OUTCHR calls WAIT with the value that is loaded into
the A-register from SPEEDBYT. SPEEDBYT is equal to the value that is evaluated from the Applesoft
SPEED= statement and exclusively-ORed with @xFF. Therefore, if SPEED= contains the value of 255, the
default speed, SPEEDBYT is set to @x@@. If SPEED= contains the value of 254, SPEEDBYT is set to @x@1.

The INPUTERR routine at @xDB6F must determine whether an illegal character comes from an INPUT source,
a READ source, or a GET source when an illegal character is found somewhere within a numerical field. The
READERR routine at @xDB79 handles READ errors, the ERRLINN routine at @xDB7D handles GET errors, and
the RESPERR routine at @xDB87 handles INPUT errors. I modified the INPUTERR routine and created another
handler for Syntax errors at @xDB81. Doing so simplifies PRINT error processing and INPUTERR error
processing while saving a couple of bytes. RESPERR issues the Reenter request message to handle an
INPUT error. The Applesoft GET statement at @xDBA@ follows the various error processing routines. The
GET statement is one of the few statements that can only be used in Running mode. The INPTLIST routine
that the GET statement utilizes in order to obtain its input data requires (X/Y) to point to an input buffer
which is INPUT+1 and the A-register must be set to the GET command code which is @x4@ for INPUTFLG.
I modified the GET routine and changed a JSR/RTS construction to a JMP construction which saves
processing time and one byte. The Applesoft INPUT statement at @xDBB2 follows the GET statement
processing. The INPUT statement is another statement that can only be used in Running mode. If the INPUT
statement is supplied with a string that prefaces the desired input data, that string is printed by STRPRT, and
because I modified STRPRT so nicely, a branch rather than a jump instruction can be used after calling this
routine. Otherwise, the INPUT statement prints the prompt character and requests the desired input data.
In either case, INLIN obtains the input data and it sets (X/Y) to INPUT-1. The INPUT statement branches
to set the A-register to the INPUT command code which is @x@0 and it falls into INPTLIST. Finally, the
Applesoft READ statement at @xDBE2 sets (X/Y) to DATPTR, the A-register to the READ command code
which i1s @x98, and it falls into INPTLIST. Sandwiched between INPUT and READ is the HEXTIN routine at
OxDBDC. The HEXTIN routine prints the prompt character and jumps directly to INLIN on behalf of
INPTLIST. These are certainly well-imagined routines.

The INPTLIST routine at @xDBEB is the first of six intertwined routines that obtain the requested data on

behalf of the GET, the INPUT, or the READ Applesoft statements. The other five routines that bring data into

the Apple computer are the INPTITEM routine at @xDBF1, the INSTART routine at @xDC2B, the INPTFLG

routine at @xDC99, the FINDATA routine at @xDCA@, and the INPTDONE routine at @xDCC7. MESGZ21 at
21

OxDCDF prints the >Extra Ignored message and MESG22 at @xDCEF prints the >Reenter message.
INPTLIST simply saves the current value in the A-register to INPUTFLG and it saves the registers (X/Y)
to SRCPTR. INPTITEM gets the address of the input variable, sets TXTPTR to point to the selected input
buffer, and calls RDKEY at @xFDO@C in the ROM Monitor to get a character for GET, or it branches to FINDATA
for READ, or it falls into INSTART for INPUT. The call to RDKEY makes a jump to RDKEYZ at @xFD13 in the
ROM Monitor so it would be faster to simply call RDKEYZ only if this version of the Applesoft interpreter
is used in conjunction with the Apple //e ROM Monitor. Leaving this call for RDKEY processing is the safer
option. INSTART gets the next input character to build either a floating-point number or a character string
variable. Initially, a NULL character or a quote character is used for the string terminator, but if the quote
character is not an input character, then the NULL, colon, or comma character can be used for the string
terminator. The call to STRLITZ at @xDC57 builds a character string starting at CA/Y) and the call to GETINT
at OxDC6A uses TXTPTR to get a floating-point number. INPTFLG uses INPUTFLG to simply direct READ
and INPUT data operations. FINDATA is used by READ as indicated above. This routine needs to check for
a colon :, an End of Line NULL, or an End of Program NULL. The final routine in this set of data input
routines is INPTDONE and this routine restores the (A/Y) registers from SRCPTR and the X-register from
INPUTFLG. If aREAD is requested, then (A/Y) is saved to DATPTR. Otherwise, an INPUT is requested and
if the character at SRCPTR is not a NULL character, then MESG21 is printed. I have made several
modifications to FINDATA and to INPTDONE that slightly accelerate the processing of these two routines.

The Applesoft NEXT statement at @xDCF9 directly follows the various data input routines. Processing for
the NEXT statement is involved, complex, and a little difficult to follow. Each 20-byte FOR/NEXT frame is
stored in the STACK and NEXT statement processing must retrieve variables and addresses that are contained
in that frame in order to control the flow of FOR/NEXT loop processing either back to the FOR statement or
to the statement that follows the NEXT statement. I found this routine to be a great opportunity to condense
it, to accelerate it, and to utilize the guard bytes that are now included in all floating-point variables that are
pushed onto the STACK on behalf of FOR/NEXT processing. The NEXT statement may optionally include the
incrementing variable of its companion FOR statement. Slightly faster overall processing can be achieved
if that variable is not included with the NEXT statement. The only difference in timing amounts to a call to
PTRGET. Regardless, the address of that incrementing variable is either verified or located by GTFORPNT.
NEXT locates the STEP value, the END value, and the sign of the STEP value in the frame for this FOR/NEXT
loop. The STEP value is added to the incrementing FOR variable, its value saved to VARTAB, and its value
compared to the END value. That result, ironically, is used in a calculation to determine if the FOR/NEXT
loop has expired. If the FOR/NEXT loop has remaining iterations, both CURLIN and TXTPTR are extracted
from the frame and NEXT jumps to NEWSTT processing in order to run the next FOR/NEXT iteration.
Otherwise, NEXT enters some very interesting processing which allows NEXT to include all incrementing
and comma-separated variables if there exists at least one nested FOR/NEXT loop. A bit of recursive
processing is used to handle that particular Applesoft programming construction. I extracted a total of five
bytes of unnecessary logic and I accelerated the beginning of this routine. I have also made the size of the
FOR/NEXT frame dynamic, so if FACGUARD is not pushed onto the STACK on behalf of FOR, the FOR/NEXT
frame size would revert back to eighteen bytes since FACSIZE would be equal to only five bytes.

The FRMNUM routine at @xDD64, the CHKNUM routine at @xDD67, the CHKSTR routine at @xDD69, and the
CHKVAL routine at @xDD6A all follow the processing for the NEXT statement. If NEXT implements its
recursive processing, NEXT literally falls into FRMNUM in order to begin processing the next comma
delineated NEXT statement in exactly the same way the FOR statement calls FRMNUM at @xD799. This is truly
insightful programming. These four evaluation test routines confirm that the variable under evaluation is a
string variable when VALTYP is equal to @OxFF and the C-flag is set or the variable is a numeric variable
when VALTYP is equal to @x00 and the C-flag is clear. To further decode numeric variables, a numeric
variable is a floating-point variable when VALTYP+1 is equal to @x0@ or a numeric variable is an integer
22

variable when VALTYP+1 is equal to @x8@. If the variable under evaluation and VALTYP in concert with the
C-flag do not match these specifications, the Type Mismatch error message is issued and the Applesoft
interpreter terminates any further program processing. I wonder (rhetorically) why a single value-type
variable could not be utilized having the values of 0x00, 0x40, or @x8@ that could easily be tested using
the BIT instruction regardless of the C-flag in order to more quickly evaluate variable type for a string
variable, for a floating-point variable, or for an integer variable? The FRMEVAL routine at @xDD7B follows
these variable evaluation tests. FRMEVAL utilizes TXTPTR in order to evaluate the expression that resides at
that location in memory. Whatever value FRMEVAL extracts from that expression is transferred into the FAC
floating-point register. Also, FRMEVAL can be used to evaluate both string and numeric expressions. This
routine fully utilizes the precedence code found in the Operator TAG statements in order to properly
evaluate the expression using relational operators and/or mathematical operators. When string variables
are evaluated for addition, FRMEVAL simply concatenates the strings. Some operations are pushed onto the
STACK and evaluated as if they were functions by utilizing the recursive FRMRECUR routine. As in the
processing for the FOR and the STEP statements, the SAVOP routine at @xDDD7 calls FRMRECUR at @xDDFD
to utilize the FRMSTAK routine in order to push the FAC floating-point register onto the STACK.

The FRMSTAK routine at @xDE1@ follows FRMRECUR. FRMSTAK uses a protocol that is different from the
DOSTAMT routine which pushes a decremented address onto the STACK in order to engage the processing of
the routine for the selected statement by means of CHRGET. Rather, FRMSTAK pulls the address of the calling
routine from the STACK, increments that address, and saves that address in INDEX. Once FRMSTAK has
pushed the FAC floating-point register onto the STACK, it simply jumps indirectly to the address in INDEX.
There is a 1 in 256 chance, perhaps, of finding an address on the STACK that is off a 256-byte page boundary
by one byte, or @xnnFF, where nn is some page value. In the unmodified Applesoft, FRMSTAK assumes that
this occurrence will never happen and, therefore, it only increments the LSB of the address without even
checking the MSB of the address. Only two routines utilize FRMSTAK, so it is reasonable to smartly position
those two routines away from a page boundary in order to prevent such a miscalculation. The necessary
logic to modify this routine and not be concerned with page boundary issues amounts to adding three bytes
of additional code. Those three bytes as well as an additional three bytes for a modification to the NOTMATH
routine are obtained by offloading some of the logic that pushes the FAC floating-point register onto the
STACK to another memory location in the modified Applesoft. When FRMEVAL finds no mathematical
operations to perform while evaluating an expression, it branches to the NOTMATH routine at @xDE32 in
order to setup its exit by loading FACEXP into the A-register. However, if NOTMATH finds that there is an
operation that has been pushed onto the STACK, that floating-point value is pulled from the STACK into the
ARG floating-point register in preparation for mathematical processing. Those additional three bytes are
now used to pull FACGUARD from the STACK into ARGGUARD.

The FRMELMNT routine at @xDE6@ follows NOTMATH. FRMELMNT processes an array element and it either
extracts a numerical value at TXTPTR or it uses TXTPTR that points to a string descriptor and it falls into
STRTXT at @xDE81 in order to initialize (A/Y) to point to the first character in that string for the STRLIT
routine. The following NOTFUNC routine at @xDE9@ checks for an Applesoft NOT statement, one of those
catch-all statements in the C@:C7 token number range, initializes the Y-register with the EQU tag, and lets
the EQULFUNC routine handle further processing. The Applesoft = statement is processed by the Applesoft
EQUAL statement at @xDE98 in order to initialize the Y-register with @x@1 if FACEXP is @, otherwise, it
initializes the Y-register with @ and it creates an integer from either value. Processing on behalf of the
Applesoft FN statement and on behalf of the Applesoft SGN statement is offset by three bytes in the modified
Applesoft. The FNFUNC routine at @xDEA7 evaluates the FN token and jumps to CALLFNC whereas the
SGNFUNC routine at @xDEAE evaluates the SGN token and falls into PARENCHK when that evaluation fails
with any token number less than @xD2. In the unmodified Applesoft, SGNFUNC branches to PARENCHK and

23

jumps to UNARY for further consideration. The modified Applesoft simply branches to UNARY and saves
three bytes of Applesoft space, but more importantly, the modified Applesoft has accelerated FUNCTION
statement processing.

Applesoft expressions are typically enclosed in parentheses. The PARENCHK routine at @xDEBZ2 calls the
CHKOPNP routine to check for an open parenthesis, then calls the FRMEVAL routine and falls into the CHKCLSP
routine. The CHKCLSP routine at @xDEB8 checks for a closed parenthesis using the SYNTXCHK routine. The
CHKOPNP routine at @xDEBB checks for an open parenthesis. Both parenthesis checks use the SYNTXCHK
routine. The CHKCOM routine at @xDEBE checks for a comma and falls into the SYNTXCHK routine. The
SYNTXCHK routine at @xDEC@ compares the ASCII character that resides in the A-register to whatever
the TXTPTR is currently pointing to. That ASCII character is expected to be where TXTPTR is pointing, so
if that character is not found at that memory location, the Applesoft interpreter will issue a Syntax error.

The MINUFUNC routine at @xDECE follows the parenthesis and comma evaluation routines and this routine
handles the minus function, it initializes the Y-register with the NEG tag, and the routine falls into the
EQULFUNC routine at @xDED®@ that also processes the NOTFUNC routine discussed above. The EQULFUNC
routine simply pops the STACK pointer twice and it jumps to the SAVOP routine in order to push that
processing onto the STACK. When the FRMELMNT routine finds an ASCII letter A-Z, it branches to the
GETIVAL routine at @xDED5. GETIVAL locates the address for this array element. If this array element is a
floating-point number, that number is loaded into the FAC floating-point register using INDEX. If this array
element is an integer, that integer is converted into a floating-point number. Otherwise, this routine returns
with the address of the string array element in VARPTR. The Applesoft SCRN(statement is processed next
by means of the SCREEN routine at @xDEF9 which is one of those odd FUNCTION statements that is
syntactically not a FUNCTION1 statement because it contains two numerical expressions that are separated
by a comma rather than a single numerical expression. And, the SCRN(statement is syntactically not a
FUNCTIONZ statement because its two expressions contain numerical variables rather than string variables.
Thus, PLOTFNS is used to extract those numerical variables for the screen location that the ROM Monitor
SCRN function at @xF871 requires in order to provide its 4-bit color value.

I have had the pleasure to evaluate many complex Applesoft routines, but the UNARY routine at @xDF@9 in
the modified Applesoft is one of the most interesting routines which I found necessary to modify in order
to add two statements to the Applesoft language repertoire. The UNARY routine manages all of the
FUNCTION1 and FUNCTIONZ statements from SGN to MID$, and UNARY even uses its capabilities to process
the SCRN(statement and utilize its call to CHRGET on behalf of SCREEN processing. Adding a new Applesoft
statement requires Applesoft space for its address and Applesoft space for its statement name in DCI format.
Since all token values from 0x8@ to OXEA are already assigned, the next available token number is @xEB.
The address for any new Applesoft statement must follow the address of MID$ if that statement is to be
processed by UNARY. And, new instructions are required to sort out the new token numbers at the beginning
of the UNARY routine. In the unmodified Applesoft, the address that is associated with the SCRN(statement
at @xDO8A uses the address for PRTERR and not for SCREEN at @xDEF9. In other words, the UNARY routine
will never point to the address for processing the SCRN(statement since UNARY already captures its token
number. The modified Applesoft requires @xD@O8A to contain the address for SCREEN in order for UNARY to
process the SCRN(statement. Just allocating the additional space for a new statement address and for a new
statement name at the beginning of the Applesoft interpreter is a difficult, first hurdle. Modifying the UNARY
routine in order to incorporate a new Applesoft statement is the final hurdle. In UNARY processing, all of
the variables that are pushed onto the STACK as well as their order is critical so that FN processing is fully
supported. For this single reason, there are no shortcuts that can be implemented when attempting to modify
UNARY. First, all FUNCTION1 statements, that is, statements that are not string functions like LEFTS$,
RIGHTS$, or MID$, must branch to @xDF3A for PARENCHK processing except for SCRN(which branches to
24

OxDF3D just after PARENCHK processing. Second, if the new Applesoft token number is equal to @xEB, it
must also branch to @xDF3D since the Applesoft PI statement does not require its expression to be evaluated
by FRMEVAL. Third, if the new Applesoft token number is greater that @xEB, it must branch to PARENCHK
processing since the Applesoft LN statement does require expression processing. And fourth, space must
be made available in order to accommodate these specific token number branches such that the instructions
that form the jump address for the target routine remain at @xDF3F. I found that I could relocate the final
three processing bytes for string FUNCTIONZ statements elsewhere in Applesoft space for the three bytes
that are needed in order to implement the branches for the Applesoft SCRN(, PI, and LN statements. Once
the relocated instructions complete their processing, a jump is made directly to @xDF3F. I have only added
three cycles to string FUNCTIONZ statement processing for those relocated instructions. Rather than pushing
a decremented address onto the STACK or saving the target address in INDEX and indirectly jumping to
INDEX, the UNARY routine saves the target address to JMPADRS+1 and JMPADRS+2 and uses JMPADRS as a
subroutine call. Of course, if the byte at JMPADRS is ever clobbered and no longer equal to the absolute
address JMP instruction @x4C, all hopes of Applesoft interpreter recovery would be dismal if not impossible.
Should JMPADRS always be refreshed with @x4C? I wonder. I think it should. But how?

String and Numeric Variables

Applesoft is only generally divided into its collection of statements and routines that assist the management
of string variables, floating-point variables, and integer variables. These variables are managed by the use
of descriptors whose format depends on the type of variable that it describes. The following is a collection
of Applesoft statements and routines that manage string and numeric variables.

The simple binary routines for the Applesoft OR statement at @xDF4F, the Applesoft AND statement at
OxDF55, the Applesoft FALSE routine at @xDF5D, and the Applesoft TRUE routine at @xDF6@ all follow
UNARY processing. These four routines only need to operate on FACEXP and ARGEXP in order to generate
an integer response. The Applesoft LT statement processing at @xDF65 follows TRUE. LT processing
performs relational operations by comparing the FAC floating-point register with the ARG floating-point
register and floating the result. Staying on point, the Applesoft STRCMP routine at @xDF7D compares two
string variables. Both the FAC floating-point register and the ARG floating-point register are utilized in order
to make comparisons of the content of the two string variables. Like in LT processing, STRCMP processing
uses the NUMCMP routine at @xDFBO in order to float the results of its string comparison and NUMCMP floats
the results of LT comparisons. The Applesoft PDL statement at @xDFCD converts its expression into an
integer in order to call the ROM Monitor routine PREAD at @xFB1E. Unfortunately, PDL processing will
accept an expression that produces any input numerical value from @ to 255. Though PREAD does not test
or mask the X-register for valid input values, PREAD is intended to provide only four paddle read values
for paddles @:3. Applesoft promulgates this nonsense that users will only use Applesoft statements
correctly and within their defined ranges whereas I believe users must be informed when they utilize an
Applesoft statement incorrectly or beyond the range of useability for that statement. PDL processing does
not perform its task well enough in the unmodified Applesoft and corrective action is required. I supplied
additional instructions to ensure that the argument that is supplied with the Applesoft PDL statement is
within the range of @:3 or the Illegal Quantity error message is given in response rather than an
erroneous numerical result from PREAD. The Applesoft DIM statement at @xDFD9 follows PDL processing.
DIM processing simply allocates the memory for the descriptor of an array variable and its elements.
Applesoft automatically provides memory for up to eleven elements for any array variable from 0:10. If
an array variable contains more than eleven elements, that array variable must be dimensioned using the

25

DIM statement or the Bad Subscript error will be issued when a dimension greater than the number 10 is
ever utilized. Even though an array descriptor allows for up to 255 dimensions, Applesoft limits the number
of dimensions for an array to eighty-eight, that is, DIM A(@,0,..0) can only specify up to eighty-eight
zeros. DIM processing uses successive calls to PTRGET to allocate the memory for an array followed by a
call to CHKCOM in order to process the next following array element variable.

The Applesoft PTRGET routine at @xDFE3 is nearly a page in length at @xEF bytes and it wraps around the
Applesoft cold start and warm start entry points at @xEQQQ and @xE@@3, respectively. PTRGET is an
important external routine as well, so its legacy entry address must definitely be conserved. PTRGET is
somewhat controlled by the DIMFLG flag and by the SUBFLG flag as mentioned earlier in the processing for
the Applesoft FOR statement. All calls to PTRGET initialize DIMFLG to @ except for the call from Applesoft
DIM statement processing which sets DIMFLG to a non-zero value. SUBFLG is initialized to @ by the
STKINIT routine which is part of SETPTRS (or ASTROMCLR) and utilized by DOS 4.5.08H in order to RUN
or to CHAIN an Applesoft program. STKINIT is also called by PRTERR whenever an error message is
displayed on the screen as a result of a processing error that causes the Applesoft interpreter to terminate
further program processing. The GETARYPT routine in the unmodified Applesoft initializes SUBFLG to @x4@
before calling PTRGET and then GETARYPT returns SUBFLG back to @ before reading from or writing to the
cassette recorder. In the modified Applesoft, the GETARYPT routine is removed and all SUBFLG logic is no
longer required to test for @x4@. Therefore, the six bytes of SUBFLG logic at @xE@48 is no longer necessary.
Like the FOR statement, the Applesoft DEF statement processing initializes the SUBFLG to @x8@ in order to
restrict its variables to only simple variables and never array variables. GETFNC processing sets the SUBFLG
to any of the token values from @xC@ to @xDB. This tells PTRGET precisely which Applesoft statement is
requesting the information for the specified variable. PTRGET is a general variable scan routine for the
variable name that is found at TXTPTR, and PTRGET searches VARTAB and ARYTAB for that variable name.
If PTRGET is unable to locate the variable name, PTRGET creates the appropriate type variable in either
VARTAB or in ARYTAB. PTRGET names the descriptor, clears the descriptor, and inserts the address of the
value into the descriptor for that variable. PTRGET returns with the address of the variable in VARPNT as
well as in (A/Y) for the external user. For some reason that [am unable to fathom, the Applesoft language
developers occasionally insert a short routine within a lengthy routine that has absolutely nothing in
common with the lengthy routine. The CHKASCT routine is one such routine that I moved to @xE@DA from
the middle of PTRGET to the end of PTRGET. I also moved the value for integer zero from the middle of
PTRGET to @xE1@5 which is just before the floating-point value for 32768 at @xE107. CHKASCI is a very
short routine that sets the C-flag if the A-register contains an ASCII character from A to Z, otherwise,
CHKASCI clears the C-flag. I not only shortened this routine by one byte from the version that is found in
the unmodified Applesoft, but I also accelerated this routine as well. The PNTARVAL routine at OxEQE3
points to the first array value by calculating the size of the descriptor for that array variable which depends
on multiplying the value of its dimensions by two and adding in the size of its descriptor #AHADRLEN.

The STRSETUP routine at @xEQFF follows PNTARVAL and the short continuation of the UNARY routine so
that the PI and the LN statements can be include in the modified Applesoft. STRSETUP is a 3-byte patch
that checks for a closed parenthesis before continuing the processing at @xE6BC. This software patch is
used by LEFT$, RIGHTS$, and MID$ statement processing. As mentioned above, the IVALZERO zero value
and the FP800@ 32768 value follow STRSETUP. The MAKINT routine at @xE1QC evaluates the numeric
expression that is currently pointed to by TXTPTR. MAKINT falls into the AYPOSINT routine at @xE112 in
order to test FACSIGN and verify that the evaluation result is positive, or AYPOSINT issues an Illegal
Quantity error. That positive result is submitted to the following routine AYINT at @xE116 which converts
the FAC floating-point register into an integer having a maximum value of 32767. AYINT uses the floating-
point verification value of 32768 in order to test if the value in the FAC floating-point register is equal to or
greater than the verification value. Unfortunately, the Applesoft language developers failed to include the
26

fourth byte of the mantissa for this verification value. The correct verification value for FP80@0 is utilized
in the modified Applesoft.

The ARRAY routine at @xE128 follows AYINT and this routine locates an array element or this routine creates
an array element. ARRAY is an extraordinarily lengthy routine of @x1B6 bytes and ARRAY utilizes the STACK
heavily. This routine is one of the most poorly designed and implemented routines in all of Applesoft.
Even the Y-register that serves as the dimension counter is pushed onto the STACK. My first modification
to ARRAY is to utilize NUMDIM at the very beginning of the routine rather than utilize the Y-register for
the dimension counter and simply eliminate some of the STACK complexities. VALTYP is initially pushed
onto the STACK before processing the first array dimension and then VALTYP is pulled from the STACK in
order to search for this array name once that processing is complete. However, because the Applesoft
interpreter overloads its page-zero variables to such a gross extent, ARRAY must push VARNAM onto the
STACK before it can utilize MAKINT in order to evaluate the expression at TXTPTR. Once the expression has
been evaluated, ARRAY can restore VARNAM from the STACK. I utilize the X-register and the Y-register
for different purposes in this first part of ARRAY than how these registers are utilized in the unmodified
Applesoft and, as a result, I have tremendously accelerated this part of ARRAY. When ARRAY must create a
new array, ARRAY continues its processing at @xE1BE that first determines if there even exists enough
memory for a new array. That new array can be a string array, a floating-point array, or an integer array
with a corresponding descriptor size provided. The default array size is set by #DFLTDIM whose value is
@x0B unless DIMFLG indicates that a dimension value is provided. Once the address for the end of the array
is computed at @xE20B, STREND can be evaluated in order to verify that sufficient memory exists for all
requested array elements. When ARRAY must locate a specific array element, ARRAY continues its
processing at @xE24B by pulling subscripts from the STACK and comparing those subscripts to the desired
element number. The FINDELE label is used at @xE24B for this processing. This part of ARRAY processing
even goes as far as having to multiply subscripts using the MULSUBS routine. Of course, ARRAY must utilize
VARNAM to discriminate between string, floating-point, and integer type arrays to correctly calculate the
address for the first array element in order to determine the address of the specified element. ARRAY returns
with the address of the specified element in VARPNT as well as in (A/Y) for the external user.

The MULSUBS routine at @xE2AD is a 16-bit integer multiply routine that ARRAY uses in order to multiply
two subscript values. The subscript that is found in LOWTR is the multiplicand and the subscript that is
found at STRINGZ is the multiplier. If the product should ever exceed 32767, the Out of Memory error is
issued and ARRAY is unable to create this array within ARYTAB. It is rather a shame that the Applesoft
language developers could not have developed a 32-bit integer multiply routine and use that routine for
ARRAY as well as for correctly processing the Applesoft RND statement. I have no doubt that MULSUBS and
my 32-bit integer multiply routine can be merged. MULSUBS is followed by the processing for the Applesoft
FRE statement at OxEZDE. If a temporary variable exists and it is a string variable, its descriptor is released
before FRE calls the GARBAG routine. Thus, the FRE statement forces the call to GARBAG. After GARBAG
processing, the number of bytes of Free Space between FRETOP and STREND is calculated, saved as an
integer, floated as a floating-point value, and presented to the caller. FRE does evaluate its expression, so
its expression must be something legal, but FRE does not utilize the value that the Applesoft interpreter
obtains from that expression which might be something useful. The Applesoft POS statement at @xE2FF
follows the FRE statement and this statement extracts the value in CH, the current horizontal screen cursor
position relative to the left hand margin of the TEXT window, and presents that value to the SNGFLT routine
at @xE301 in order to generate a single byte integer that is floated to a floating-point value between @ and
255. The Applesoft interpreter evaluates the expression for POS but POS does not utilize the value that is
obtained from its expression similar to the processing for the FRE statement, another wasted opportunity.
As in the CH variable, the first character at the left hand margin of the TEXT window on any line has a value
of @. The short Applesoft routine CHKIFDIR at @xE305 follows SNGFLT, and CHKIFDIR issues the I1legal
27

Direct error whenever CURLIN+1 is still equal to @xFF, that is, when the Applesoft interpreter is still
processing in Direct Mode and not in Running Mode. I removed a SEC instruction at the beginning of
SNGFLT that serves absolutely no purpose whatsoever in order to accelerate interpreter processing.

The Applesoft DEF statement at @xE313 follows the I1legal Direct and the Undefined Function error
messages at OxE30B and OxE30E, respectively. DEF processing uses the GETFNC routine to parse and to
verify that the next program token number is the Applesoft FN token number and GETFNC obtains the
address of that function name in order to initialize FUNCNAM. DEF now expects the Applesoft interpreter to
be in Running Mode before it evaluates the FN expression for its required dummy variable. PTRGET
initializes VARPNT with the address of this simple variable. To complete the required syntax of this
statement, the token number for the Applesoft EQUAL statement is verified last. The first token number
after the EQUAL statement, that is, the Applesoft statement that FN is about to process, VARPNT content, and
TXTPTR content are all pushed onto the STACK, processing for the Applesoft DATA statement is performed
that swaps out the dummy variable, and DEF statement processing continues in the FNCDATA routine. The
GETFNC routine at @xE341 is utilized by DEF processing as described above and by the CALLFNC routine at
OxE354 which follows GETFNC. Once processing returns from GETFNC, CALLFNC pushes FUNCNAM onto
the STACK in order to protect its value in case of a nested FN statement before it calls PARENCHK in order to
evaluate its numerical expression, and then CALLFNC can restore FUNCNAM from the STACK. CALLFNC
restores VARPNT from FUNCNAM and pushes all five bytes of its floating-point value onto the STACK as well
as loading the FAC floating-point register with that same value. CALLFNC now pushes TXTPTR and VARPNT
onto the STACK, evaluates the FN statement expression with the actual replacement value for the dummy
variable, restores the address of the dummy variable from VARPNT into FUNCNAM, and restores TXTPTR
before falling into FNCDATA for further processing, just like in DEF statement processing. The FNCDATA
routine at @xE3AF, on behalf of DEF, restores from the STACK the TXTPTR, VARPNT, and the Applesoft
statement that is being processed by FN. Otherwise, on behalf of CALLFNC, FNCDATA restores from the
STACK the original value for the dummy variable that was specified in the expression of the FN statement.
Why the original value that is found in the dummy variable is pushed onto the STACK at @xE378 in a register
loop and pulled from the STACK byte by byte in FNCDATA is very perplexing. Is it because the FNCDATA
routine processes data twice as often as the routine at @xE378? I have no doubt that the Applesoft language
developers utilized a number of caulk boards in order to design the DEF FN statement pairing routines and
the FN statement processing routines in conjunction with the existing BASIC interpreter routines and their
specific capabilities. FN statement processing is a substantial endeavor, but it does heavily compromise
STACK resources and it limits the nesting for the utilization of many FOR/NEXT loops or many nested
GOSUBs. I wonder if many Applesoft users have even utilized a DEF FN statement or even many nested
FOR/NEXT loops or many nested GOSUBs in their Applesoft programs? Having to support the DEF FN
statement is the driver for having to push all of those parameters and variables onto the STACK in UNARY.

I would very much like to understand why the Applesoft language developers differentiated between a NULL
terminated ASCII string when that string is found at STACK-1, at STACK, or at INPUT. The Applesoft STR
statement at @xE3C5 follows FNCDATA processing. The expression for the STR statement must be a numeric
string whose numeric ASCII values are written to and begin at STACK-1 or @x@0FF when STR processing
branches to the STRLIT routine with STACK-1 in (A/Y). Whereas FRMEVAL, for example, evaluates an
expression for the Applesoft PRINT statement and finds its string values at the beginning of the STACK or
0x0100 when it calls the STRLIT routine with STACK in (A/Y). As previously noted, the STRTXT routine
calls the STRLIT routine when its string values are found in the INPUT buffer at @x0200, all in the
unmodified Applesoft. This string differentiation plays out in the STRLIT processing where NULL
terminated strings that begin on Page @x@0 or that begin on Page @x02, that is, at STACK-1 or in the INPUT
buffer, respectively, are fully processed and moved into memory. NULL terminated strings that are found

28

on Page 1 are not fully processed and they are not moved into memory. I can certainly understand why
STR strings and Page 2 strings are processed differently than Page 1 strings. I simply cannot grasp why so
much effort is expended in order for the FPOUT routine to begin NULL terminated strings at two different
memory locations at or about the STACK. The STRINI routine at @xE3D@ follows the STR routine and this
routine takes the string address at FACMANT+2 in order to create a descriptor for that string by the following
routine STRSPA at @xE3D8. STRSPA is only utilized by the CHR$ and LEFT$/RIGHT$/MID$ processing, and
STRSPA uses the GETSSPC routine to find space for that string at FRETOP. All of my fuss over the STRLIT
routine is focused at OxE3EZ2 and STRLIT follows STRSPA. STRLIT builds a descriptor for the string
variable at (A/Y) that is either NULL terminated or surrounded by quotation marks. STRLIT may utilize
STRINT in order to move that string variable into memory as noted above, but STRLIT always creates a
temporary descriptor in page-zero. As will be presented in FPOUT, when FPOUT processes the FAC floating-
point register in the modified Applesoft, FPOUT always writes the numeric ASCII values for that floating-
point value to the beginning of the STACK in a/l situations. Therefore, STRLIT must utilize a new strategy
in order to differentiate the various string variable sources and what processing to implement. Only half of
the bytes that implement the old strategy in the unmodified Applesoft are utilized for the new strategy in
the modified Applesoft, and STRLIT is, of course, accelerated.

The PUTNEW routine at @xE426 follows STRLIT and this routine verifies that there are no more than three
3-byte temporary string descriptors in page-zero, otherwise the Formula too Complex error is issued.
Perhaps only overly complex expressions use more than three temporary string descriptors? I have yet to
witness this error message. PUTNEW proceeds to copy the temporary string descriptor that is currently in
DSCTMP to TEMPST indexed by @, 3, or 6. No two Applesoft string descriptors will ever point to the same
memory location. Even if the ASCII content of two string variables are identical, that string data content
will be found at two different memory locations and their string descriptors will contain one or the other
memory address. The GETSSPC routine at @xE454 returns with the address of a memory location within
the Character String Pool at FRETOP for the number of bytes specified in the A-register. GETSSPC is
only utilized by STRSPA and it returns with the allocated space in (X/Y). If GETSSPC pushes FRETOP down
to or past STREND, GETSSPC will issue the Out of Memory error, set the MSB of the GARFLG flag, and it
will attempt to recover some Character String Pool memory by calling the GARBAG routine and then repeat
the exercise one more time. The GARBAG routine at @xE484 directly follows GETSSPC.

The GARBAG routine utilizes an algorithm similar in concept to a basic bubble sort algorithm in order to
remove all of the unreferenced character string data from the Character String Pool. Thus, GARBAG attempts
to compact the Character String Pool contents for GETSSPC or before the DOS 4.5.08H CHAIN command
can relocate the SAVs in memory. The processing time for GARBAG to extract all of the little bits and pieces
of unreferenced character strings and string characters is proportional to the square of the number of
character strings that are currently in use. So, if there are one hundred active character strings it will take
four times longer to process those character strings than if there are only fifty active character strings. Many
Garbage Collection algorithms have been previously published that accomplish the same results as GARBAG
in far less time, but there can be a number of caveats when using some of these other algorithms. For
instance, normal Applesoft programs save all character string data in lower ASCII where the MSB is clear
for each character byte in the string. Furthermore, normal Applesoft programs never allow more than one
character string descriptor to point to the same character string data in memory. Multiple character string
variable and array element descriptors may each point to identical character string data sets, but these
identical sets of character string data must reside at different memory locations. Some Garbage Collection
algorithms depend upon these constraints. If either constraint is not found to be true, a catastrophe will
result during the course of subsequent Applesoft processing! Of course, if the character string data of an
Applesoft program is kept normal and these constraints are observed, there will be no subsequent processing
problems. If assembly language routines, possible appendages to the Applesoft program, or other code

29

segments perform exotic manipulations to the character string descriptors or to the content of the Character
String Pool, these constraints might very well be violated. As described above, the Applesoft FRE statement
forces a call to GARBAG and the number of bytes of Free Space between FRETOP and STREND is calculated,
saved as an integer, floated as a floating-point value, and presented to the caller.

Cornelis Bongers of Erasmus University in Rotterdam, Netherlands, published a brilliant Garbage Collector
specification for Applesoft character strings in Micro, August, 1982, many, many years ago. According to
an article in Apple Assembly Line, March, 1984, the speed of Mr. Bongers’ algorithm was incredible when
compared to the GARBAG algorithm that was designed by the Applesoft language developers. And, the
processing time for this algorithm was directly proportional to the number of active character strings rather
than to the number of active character strings squared. The only problem with this algorithm was that the
magazine that published the algorithm also owned Mr. Bongers’ specification. Worse yet, the algorithm
was tied to a program called Ampersoft, marketed by Microsparc, then publishers of Nibble magazine. It
was reported that a license to use Bongers’ algorithm was prohibitively expensive at that time.

From the Applesoft Variables section, Table 1 shows the definition of a simple character string variable
descriptor as it is found in the Simple Variables memory area. From that same section, Table 2 shows the
definition of a character string array variable descriptor as it is found in the Array Variables memory area.
Bongers’ specification introduced the idea of marking active character strings that are located in the
Character String Pool. During the first pass through the Simple Variable and the Array Variable descriptors
storage areas in memory and through the Character String Pool, Bongers set the third byte in the character
string data to its upper ASCII value and he swapped in the address of its character string descriptor in place
of the first two bytes of the character string data. He saved those first two bytes of the character string data
safely in the address field of its descriptor or of its character string element. The address that was previously
in the address field of the descriptor would most likely be changed anyway after all of the character strings
are moved up in memory to their final destination. During the second pass through the Simple Variable
and the Array Variable descriptors storage areas in memory and through the Character String Pool, he
moved all of the active character strings up in memory as far as possible, he unmarked the third character
string data byte, he retrieved the first two characters from storage in its descriptor or in its character string
element, and he updated the address field to the new memory location where that string now resides in the
Character String Pool.

Bongers’ algorithm is most efficient when the active character strings are a least three bytes in length, so
one- and two-character strings require slightly different handling in his specification. During the first pass
through the Simple Variable and the Array Variable descriptors storage areas in memory and through the
Character String Pool, he saved the first byte of character string data pointed to by these short descriptors
into the character string length byte of its descriptor. If the character string length is two, he stored the
second data byte into the low address byte of its descriptor. For single byte character strings, he flagged
the low address byte with the value of @xFF. He flagged the high address byte in all short descriptors with
the value of @xFF since no character string will ever have a memory address that is equal to or greater than
OxFF0@0. If he found short character strings during the first pass, he set a short descriptor’s flag and if that
flag was found to be set after the second pass was completed, his specification initiated a third pass where
he returned the short character strings to the Character String Pool with their descriptors updated to their
new memory location. Short character strings do slow down Bongers’ algorithm a little. However, the
processing time is still directly proportional to the number of active character strings, and not to the number
of active character strings squared. Table 6 illustrate Bongers’ specification during the first pass through
the Simple Variable and Table 7 through the Array Variable descriptors storage areas in memory and
through the Character String Pool.

30

String Descriptor Before Pass 1 String Descriptor After Pass 1
AS | As] 1 | Lse [MsB | 0 | @ | [+As] As] a1 | FF | FF | 0 | o
Character String Pool Before Pass 1 Character String Pool After Pass 1
=
a | [1 1 [] a | [1 1 []
String Descriptor Before Pass 1 String Descriptor After Pass 1
AS | As | 2 | LsB [MsB | © | © | | +As | As| 41 | a2 | FF | o | o
Character String Pool Before Pass 1 Character String Pool After Pass 1
=
wfa] | | [| wfa] | | []
String Descriptor at ADL/ADH Before Pass 1 String Descriptor at ADL/ADH After Pass 1
AS | AS | LEN | LsB [MSB | @ | @ | [+AS | AS LN]| 41 | 42 | 0 | o
Character String Pool Before Pass 1 Character String Pool After Pass 1
41 | 42 | 43 | 44 | 45 | 46 | 47 | [ADL [ADH | @3 | 44 | 45 | 46 | 47

Table 6. Bongers Simple Variable Descriptor Processing in Pass 1

String Element Before Pass 1 String Element After Pass 1
=
1 | 18 | MsB 41 | FF | FF
Character String Pool Before Pass 1 Character String Pool After Pass 1
=
41 | | 41 | |
String Element Before Pass 1 String Element After Pass 1
=
2 | 18 | wsB 41 | 42 | FF
Character String Pool Before Pass 1 Character String Pool After Pass 1
=
41 | 42 | 41 | 42 |
String Element at ADL/ADH Before Pass 1 String Element at ADL/ADH After Pass 1
=
LeN | 18 | wmsB LEN | 41 | 42
Character String Pool Before Pass 1 Character String Pool After Pass 1
=
41 | 42 | 43 | 44 | 45 | 46 | 47 apL | ApH | 3 | 44 | 45 | 46 | 47

Table 7. Bongers Array Variable Element Processing in Pass 1

Pass two in Bongers’ specification uses only the information that is in the Character String Pool data in
order to move all currently active character string variables up in Character String Pool memory as far as
possible. This is accomplished by initializing a string pool pointer and a character string pointer beginning
at HIMEM and then searching down in memory to FRETOP for any upper ASCII character bytes. Once an

31

upper ASCII character byte is found, its character string descriptor is located and retrieved at the memory
location that is two bytes prior to the upper ASCII character byte. That character string descriptor contains
the length of the character string and the first two ASCII characters that were copied from the data of that
character string. Those two characters may be safely copied back into its character string data and the upper
ASCII character byte that marked this string data can be changed back to its lower ASCII value. The
character string length can now be subtracted from the current character string pointer address, the new
character string address can be copied to the second and the third bytes in its character string descriptor,
and the character string data can be copied to its new Character String Pool location. However, the character
string data must be copied from its last character to its first character rather than from its first character to
its last character in order to prevent possibly overwriting part of the character string data. Once the string
pool pointer reaches the original address in FRETOP, the current character string pointer address becomes
the new address for FRETOP if the short descriptors flag is not set. If the short descriptors flag is set, then
a third pass must be made through the Simple Variable and the Array Variable descriptors storage areas in
memory and through the Character String Pool according to Bongers’ specification. A memory pointer is
initialized to VARTAB and a search is made for the @xFF byte in either the fifth byte of a Simple Variable
descriptor or in the third byte of an Array Variable element. If the prior byte also contains an OxFF byte,
then the descriptor is for a single byte character string, otherwise the descriptor is for a two byte character
string. The current character string pointer is adjusted for one or for two characters, the character string
data is copied from its descriptor to the Character String Pool, and the character string pointer address is
copied to its character string descriptor. Once the memory pointer reaches STREND, the current character
string pointer address becomes the new address for FRETOP.

I must again emphasize that Bongers’ specification depends upon two very important caveats: normal
Applesoft programs save all character string data to memory in lower ASCII, that is, with the MSB of each
character byte cleared, and normal Applesoft programs never allow more than one character string
descriptor to point to the same character string data in memory. Bongers’ algorithm will fail if a user should
program something like A$ = CHR$(193) rather than A$ = CHR$(65). Bongers’ algorithm will fail if an
assembly language routine should modify two character string descriptors to point to the same character
string data in the Character String Pool. Therefore, reasonable care must be given when creating Applesoft
programs and/or assembly language routines that take the above caveats seriously in order to exact the
stupendous benefits in using a garbage collector routine that is based on Bongers’ specification. Armed
with only these limited and published details of Bongers’ specification that I just presented, my analysis of
those details, and my complete understanding of Tables 1, 2, and 3 as well as my generation of Tables 6
and 7, my attempt to recreate Bongers’ algorithm resulted in an assembly language routine that was @x200
bytes in size. This necessitated creating a suitable Applesoft test program that would verify the accuracy
of my implementation of Bongers’ specification and to confirm to my satisfaction that no character string
was altered in length, modified in content, or destroyed during VARTAB, ARYTAB, or Character String Pool
processing. My ultimate goal would be to replace GARBAG in the Applesoft interpreter with my version of
Bongers’ specification. In the unmodified Applesoft, GARBAG occupies @x113 bytes of space and there is
0x70 bytes of additional space available in the CX ROM area at @xC600 : C66F just prior to where I placed
the SWEETI16 Metaprocessor code at @xC67@. If the CX ROM space is used, then CX ROM memory
management must also be incorporated into the new garbage routine. When all available memory is totaled,
my garbage routine must fit within @x183 bytes if it is to replace GARBAG.

Certain decisions must be made that, hopefully, do not cause the introduction of more processor cycles than
absolutely necessary in order to compact an assembly language routine. Example strategies would be to
limit subroutine calls in the inner-most loops and to limit the pushing and popping of variables onto the
STACK. Sometimes, simply reorganizing the order of a number of processing loops can greatly simplify the
routine and eliminate having to re-initialize registers. Keeping the MSB address of a variable in a register

32

when addresses are often compared or manipulated can help simplify and even accelerate the routine as
well. I have no doubt that Mr. Bongers could have condensed my initial attempt in programming his
specification down from @x200 bytes to @x183 bytes where six of those bytes are required for CX ROM
memory management. My initial attempt to condense my garbage routine could not meet the goal of @x183
bytes unless I removed the short descriptors flag that signaled whether a third pass was necessary, so I
always made a third pass. Many times, it is helpful to just take a break from any difficult programming
task, walk away, and work on something that is demanding in other ways. Thus, when I returned to my
garbage routine, I took another fresh look and I found several additional strategies that could condense my
routine even further, and even allow the use of the short descriptors flag. Hurray! I was able to place one
segment of the routine into the @x70 bytes that are located in the CX ROM area and the other segment into
the @x113 bytes where GARBAG normally resides. All that was left for me to do was the testing, the timing,
and the verification of the routine once I fully installed the routine into the Applesoft interpreter.

The CAT2STR routine at @xE597 directly follows GARBAG and CATZ2STR concatenates two string variables.
The string variable address of the first string must be pushed onto the STACK so that the address and length
of the second string variable can be evaluated. If the sum of these two strings exceeds 256 bytes, CAT2STR
issues the String too Long error message and processing for the Applesoft program terminates. I moved
this error message to the end of the CAT2STR routine in order to accelerate its processing. The MOVINS
routine at @xE5D4 follows CAT2STR, and this routine extracts the length and the address of a string variable
from its string descriptor and transfers those values into the three registers. MOVINS falls into the MOVSTR
routine at @xES5E2. MOVSTR uses the A-register for the length and (X/Y) for the address of the string
variable in order to move the string data from its current memory location to the destination address in
FRESPC. The variable FRESPC is incremented with the string length. The routine following MOVSTR is the
FRESTR routine at @xE5FD and FRESTR is used only by the GETSTRLN routine in order to call CHKSTR and
fall into the FREFAC routine at @©xE600. FREFAC is used by STRPRT and STRCMP and by the FRE statement
routine to simply obtain the address of a descriptor. It seems that GETSTRLN could have called CHKSTR and
then call FREFAC and save yet another programming symbol from the Symbol Table. FREFAC falls into the
FRETMP routine at @xE604 in order to release a single page-zero temporary string and reduce the value of
temporary strings in LASTPT. FRETMP is called with the address of a descriptor in (A/Y) in order to extract
the length of the string variable into the A-register and the address of the string variable into (X/Y) and
initialize INDEX with that same address. The FRETMS routine at @xE635 follows FRETMP. FRETMS is called
having values in (A/Y) that are compared to LASTPT. If they are equal, LASTPT is reduced by 3.

The Applesoft CHR$ statement at @xE646 follows FRETMS. CHR$ processing converts its input expression
into a single byte integer and uses STRSPA to obtain space at FRETOP for a single-byte string variable where
the input variable can be stored. The Applesoft LEFT$ statement at @xE65A follows CHR$ processing. The
LEFT$ statement processing provides several common routines that both RIGHT$ and MID$ processing can
utilize. All three string manipulation routines use the STRSETUP routine in order to process the input
expression and evaluate that expression for its first parameter, a string variable. LEFT$ processing uses
STRSPA to reserve space at FRETOP for the non-zero number of characters that it extracts from the input
string variable. The Applesoft RIGHT$ statement at @xE686 follows LEFT$ processing and it utilizes much
of the LEFT$ routine after subtracting the non-zero number of characters to extract from the input string
variable. How clever is that? The Applesoft MID$ statement at @xE691 follows RIGHT$ processing and far
more processing effort is utilized in MID$ in order to evaluate all components of its input expression. Either
one or two numerical parameters follow the input string variable in the MID$ expression, and the value of
those numerical parameters can range from 1 to 255 according to official Applesoft documentation. Since
STRSETUP handles the first parameter as in LEFT$ and RIGHT$ processing, that routine correctly detects an
error if the first numerical parameter is zero. Unfortunately, the official Applesoft documentation errors
concerning the legal range of the second numerical parameter if it is given in the MID$ expression. The
33

unmodified Applesoft apparently allows the second numerical parameter to equal zero and not issue an
error message. Of course, setting the second numerical parameter to zero in the MID$ expression does not
provide any data output whether that is intended or not. However, setting this second numerical parameter
to zero should cause the Applesoft interpreter to issue the I11legal Quantity error message and terminate
any further processing just like STRSETUP does when it finds the first numerical parameter equal to zero.
In order to manage this glaring deficiency, the output of the call to the GETBYT routine at @xE69F must not
return a value of zero in the X-register. Three bytes of memory are required in order to test the X-
register and branch if its value is equal to zero. Those three bytes of memory can be derived in several
ways by offloading some of the instructions in MID$ processing or in the following routine so as not to
perturb the entry address for the next Applesoft statement. The cleanest modification that would insert the
least processing delay would be to move the entry of STRSETUP elsewhere and jump back to finish the
STRSETUP routine. Using this strategy, STRSETUP is actually entered at @xEQFF as already noted, and at
OxE102 the routine returns to its normal processing location at @xE6BC and this patch costs this routine
only three additional processor cycles. The STRSETUP routine extracts its return address from the STACK
and saves that address, it pops and discards the return address to the UNARY routine, it pops the integer byte
value of the second numerical parameter in the expression, and it pops the address of the descriptor for the
string variable in the expression. Lastly, STRSETUP pushes the return address it previously saved and tests
the integer byte value of the first numerical parameter for zero. If that integer byte value is zero,
STRSETUP issues the I1legal Quantity error message and it terminates any further processing.

The Applesoft LEN statement at @xE6D6 follows STRSETUP. LEN processing utilizes the GETSTRLN routine
to evaluate the LEN statement expression in order to extract the length of the string variable that is found in
its descriptor, it sets VALTYP to numeric, and it returns with the length of the string variable in the Y-
register. That string variable length is floated and returned to the user as an integer value. The GETSTRLN
routine is at @xE6DC and it follows LEN processing. As I indicated above and in my opinion, the GETSTRLN
routine wastes a symbol in using FRESTR to call CHKSTR which falls immediately into the FREFAC routine.
Perhaps the Applesoft language developers had additional plans to utilize the FRESTR routine for other
purposes? The Applesoft ASC statement at @xEGES also utilizes the GETSTRLN routine in order to evaluate
its expression for the ASCII value of the first character in a string variable. If GETSTRLN should ever return
zero, the ASC statement routine will issue the I1legal Quantity error message and terminate further
Applesoft processing. Official Applesoft documentation warns that the ASC statement will generate a
Syntax error message if the statement should attempt to process a control-@ as in ASCC CHR$(@)). I
found that no such error is generated and that the value of zero is returned as expected. Inaccurate
documentation does complicate these simple routines unnecessarily. The routine GETBYTC at @xEGF5
follows the ASC statement routine and GETBYTC reads the next character at TXTPTR and falls into the GETBYT
routine at OXE6F8. GETBYT evaluates the expression at TXTPTR, returns with its byte value in the X-
register, and falls into the CONVINT routine at @xE6FB. CONVINT converts the value that is found in the
X-register to a positive single byte integer in the FAC floating-point register.

The Applesoft VAL statement at @xE7@7 follows CONVINT processing and VAL processing is the last user of
GETSTRLN. If GETSTRLN returns with a value of zero, a floating-point value of @ is returned in the FAC
floating-point register to the caller. Otherwise, VAL processing collects all of the numeric values in the
expression while ignoring all space characters up until the first non-numeric character. The resulting value
is returned as either a floating-point number or as an integer number. GETSTRLN returns with the number
of characters that comprise the numeric content in the VAL expression including the space characters.
TXTPTR, which points to the first character after the) in the VAL expression, is copied to STRINGZ for safe
keeping and INDEX, which points to the beginning of the VAL expression, is copied to TXTPTR in order to
make use of the powerful CHRGET routine. The value from GETSTRLN is added to INDEX and saved to DEST.
DEST now points to the end of the VAL expression, copies its last character to the STACK for safe keeping,
34

and replaces that character with a NULL character. This effectively allows the GETINT routine to evaluate
this entire expression for its numeric value including any +, -, ., and E characters as well as + and -
characters that might be associated with the E character if scientific notation is encountered within this
expression. After GETINT processing, DEST is used again in order to restore that last character and TXTPTR
is restored from STRINGZ by the STRCOPY routine at @xE73D. The GETINT routine performs its task as
intended unless the VAL expression happens to contain a string variable that resides at the very top of the
Character String Pool. DEST may indeed contain the address of @xCO@@ and GETINT may not even
encounter the NULL character until somewhere in the @xC0 page, though unlikely. This situation will always
be potentially problematic for GETINT whenever HIMEM is initialized to @xC@0@. Fortunately, DOS 4.5.08H
utilizes main memory from @xBEQO to @OxBFFF, and HIMEM is always initialized to @xBEQ@.

The GETASNUM routine at @xE746 follows STRCOPY. GETASNUM and the following routine COMBYTE at
OxE74C, together, evaluate two comma-separated expressions where the first expression provides a 16-bit
integer value in LINNUM and the second expression provides an 8-bit integer value in the X-register. The
GETADDR routine at @xE752 follows COMBYTE and GETADDR converts the 16-bit integer value in LINNUM to
a floating-point number in the FAC floating-point register. The Applesoft PEEK statement at OxE764 utilizes
GETADDR in order to return the value that resides at the memory address that is obtained when GETADDR
evaluates the PEEK statement expression. Following PEEK processing is the Applesoft POKE statement at
OxE77B. POKE processing utilizes GETASNUM in order to save the value that resides in the X-register to
the memory address that is found in LINNUM. The Applesoft WAIT statement at @xE784 is the final user of
GETASNUM in order to obtain a 16-bit memory address in LINNUM and an 8-bit value that is saved to FORPNT.
If a third variable is used with the WAIT statement, that value is obtained by means of COMBYTE, and that
value is saved to FORPNT+1, otherwise FORPNT+1 is initialized with zero. WAIT statement processing
occurs in a very simple loop where the value at (LINNUM) is exclusively-ORed with FORPNT+1 and ANDed
with FORPNT. If that processing produces a zero result, the processing loop is repeated. As soon as the
processing produces a non-zero result, the loop processing is terminated and no values are returned to the
user. The Applesoft WALT statement can provide a means to pause Applesoft processing until very specific
or very precise conditions are met, either by internal values or by external values such as the keyboard, the
annunciators, or the RND variable that is incremented by XKEYIN or by CXKEYIN in the CXROM.

Floating-Point Arithmetic Operations

Applesoft is only generally divided into its collection of statements and routines that perform floating-point
arithmetic operations. These arithmetic operations include subtraction, addition, multiplication, division,
and the square root function. The following is a collection of Applesoft statements and routines that perform
floating-point arithmetic operations.

The Applesoft SUB statement at @xE7A7 begins the Applesoft floating-point arithmetic operations. SUB
processing follows WAIT processing and the converted floating-point value for the PI variable at @xE7A1
and its guard byte FPIGUARD at @OxE7A6. I was able to modify the Applesoft floating-point arithmetic
operations, the floating-point register to memory routines, and the floating-point register to register routines
in order to utilize guard bytes in far more arithmetic operations once I had sufficient space for these
improvements. SUB processing begins like the other three arithmetic operations to load the ARG floating-
point register with the floating-point value that is pointed to by INDEX. The FAC floating-point register
already comes pre-loaded with the first numeric variable after the Applesoft interpreter has evaluated the
expression for the SUB statement. FACSIGN is inverted and exclusively-ORed with ARGSIGN and saved to

35

XORSIGN, the two numeric values are added, and their sum is returned in the FAC floating-point register.
The Applesoft ADD statement at @xE7BE follows SUB processing. As in SUB processing, ADD processing
begins by calling LOADARG to load the ARG floating-point register with the floating-point value that is
pointed to by INDEX. The FAC floating-point register already contains the value of the first variable in the
expression for the ADD statement. The processing that is common to both SUB processing and ADD
processing begins by messing around with their respective guard bytes. Guard bytes are left unmodified in
the modified Applesoft. Period! In order for two floating-point values to be added when these values each
utilize an exponent and a mantissa, the exponents must be equal in order for their mantissas to be added
properly, and any carry bit that results from this addition is added to the common exponent. FACEXP and
ARGEXP are subtracted and the mantissa of whichever exponent is smaller is adjusted to the right that many
bits. If the number of bits is greater than seven, the mantissa is shifted to the right by one byte for every 8
bits. The mantissa is further shifted to the right for any remaining bits. Depending on the value of XORSIGN,
the two mantissas are subtracted or added, and the resulting floating-point value is normalized. Floating-
point normalization is always performed so that the floating-point value can utilize all of its mantissa and
guard bits to their greater efficiency. The mantissa checks its MSB and the normalization routine shifts the
mantissa and the guard bits left until that MSB is set in order to create the implicit high-order one bit to
yield a full 4@-bit significand. Every time the mantissa is shifted left, the exponent is decremented. The
MSB is swapped for the sign bit from XORSIGN to complete the normalization routine. Besides the
normalization routine, SUB processing and ADD processing utilize other routines to zero the FAC exponent,
to compliment the FAC mantissa, to increment the FAC mantissa, and to shift the FAC mantissa up a variable
number of bits. FACGUARD plays a prominent and decisive role in all of these normalization routines.

I have no idea why the Applesoft language developers decided to follow the SUB and the ADD routines with
the Applesoft LN statement at @xE941. But, more importantly, why those developers called this routine
their LOG statement routine rather than their LN statement routine since this routine calculates the natural
logarithm rather than the base-10 logarithm of a positive floating-point number. One can easily compute
the base-10 logarithm LOG from the natural logarithm LN using the relationship log(x) = In(x) * log (e)
where e is about equal to 2.718281828, thus log (e) is about equal to @.434294482. A conversion may
be computed from In (x) for any base-n logarithm simply by knowing the value of log (e) for that base-n.
Electrical engineers and tactical radar engineers, for example, all utilize this logarithmic nomenclature to
ensure that their equations are using the correct logarithmic values in their calculations. Many floating-
point variables are explicitly included as well as the polynomials that are utilized to calculate the natural
logarithm before Applesoft tackles LN statement processing. These variables begin at @xE913 and they end
at @xE940, and they follow the continuation of the Applesoft PDL processing at @©xE9@8. There exists a
number of methods to calculate the natural logarithm of any positive floating-point number.

The LN statement routine factors out and saves n, the powers of 2 from the exponent of the input argument
minus EXPBIAS or 0x8@, and it reduces the value of the argument so that it is near the value of 1 in order
to utilize the identity In(x * 2™) = In(x) + n * In (2). When an argument is reduced in this manner and
its value is near the value of 1, the Taylor series expansion for In (x) can be utilized because this series
expansion produces an excellent approximation only in this finite numerical range. The Taylor series
expansion for the natural logarithm will converge faster when x is closer to 1.

X — 1 2k+1

o= [[F= el
T T T Ak

After the LN routine saves and replaces the exponent of the input argument with EXPBIAS, the routine adds
the square root of @.5 to the argument that resides in the FAC floating-point register and that register

36

becomes the divisor that is used in order to divide the square root of 2.@. That quotient is then subtracted
from 1.0. These simple add, divide, and subtract mathematical steps can be transformed as follows.

V2.0 _X—\/O.S_X\/Z.O—l
x+ Vv05 x+ v0.5 xv2.0+1

Polynomial Index | Applesoft Value | Base-10 Value | True Value | Base-10 Value
Entries - 1 0x00 0x03 3 0x03 3
/D)2 *xA7 0x01 Ox7F 3E56CB79 0.43425594 Ox7F 4EE115F3 0.404061018
(2/5)(2)*xA5 0x06 0x80 139B0OB64 0.57658454 0x80 10D0OC292 0.565685425
(2/3)(2)*xA3 0x0B 0x80 76389316 0.96180075 0x80 715BEEF0Q 0.942809042
2(2)*x 0x10 0x82 38AA3B20 2.88539007 0x82 3504F336 2.828427125

Table 8. Applesoft Natural Log Routine Polynomials

The FAC floating-point register is now in the correct format for Taylor series expansion, and the Applesoft
language developers decided to utilize only four polynomials to calculate the natural logarithm. However,
those developers modified these four polynomials from their theoretical value. All of the polynomials have
been preprocessed, -0.5 is added to the FAC floating-point register, and n, that was saved earlier from the
input argument, is converted into a floating-point variable in order to multiply it with the natural log of 2. @.
Table 8 shows the four modified values that are used for the Taylor series expansion polynomials that
process the transformed input argument to calculate its natural logarithm. The modified values deviate,
always higher, than the theoretical Taylor series expansion values. However, even if the theoretical values
shown in Table 8 are used in conjunction with the theoretical values for the fifth and sixth polynomials, the
resulting logarithmic value is still not even close to the logarithmic value that is obtained from using the
modified polynomials values. Obviously, I have no idea how these modified polynomial values were
calculated nor do I know the mathematical rationale that was utilized for these calculations.

LN processing is completed when it cleverly falls into the Applesoft MULT statement at @xE97F in order to
multiply the FAC floating-point register with the natural logarithm of two. As in SUB and ADD processing,
MULT processing begins by calling LOADARG to load the ARG floating-point register with the multiplicand, a
floating-point value that is pointed to by INDEX. The FAC floating-point register already contains the
multiplier, the value of the first variable in the expression for the MULT statement. The MULMANT floating-
point register contains the mantissa product. Both the MULT routine and the DIV routine utilize a common
PROCEXP routine that processes the FACEXP and ARGEXP exponents. If ARGEXP is @, both FACEXP and
FACSIGN are cleared to zero and the arithmetic operation is terminated. Otherwise, ARGEXP is added to
FACEXP. If their sum is less than @x8@ and the carry flag is clear, then both FACEXP and FACSIGN are
cleared to zero and the arithmetic operation is terminated as above. On the other hand, if their sum is
greater than @x80 and if the carry flag is set, an Overflow error message is generated and the arithmetic
operation is terminated. Otherwise, when the carry flag is clear, their sum is added to EXPBIAS and that
sum is stored at FACEXP. If FACEXP is not equal to @, the value that is stored at XORSIGN is copied to
FACSIGN. However, if FACEXP is equal to @ in the unmodified Applesoft, then @ is stored at FACSIGN. This
final logic cannot be more wrong! This logic makes the quotient of a very small number positive without
regard to the sign of the divisor or the sign of the dividend. The modified Applesoft fixes this glaring error.

37

At the conclusion of MULT or DIV processing, the mantissa is always copied from the MULMANT floating-
point register to the FAC floating-point register and the exponent in the FAC floating-point register is
finalized with that mantissa. As in all floating-point and integer multiply routines, the product register, that
is, MULMANT, is first cleared to zero. In order to facilitate the MULT routine, each byte of the multiplier
participates in the routine individually such that if its value is zero, then the product register is simply
shifted right by one byte. Otherwise, that byte is shifted to denote when to add the multiplicand to the
product register. FACGUARD is the first multiplier byte, and then it is immediately cleared to zero so that it
can participate in multiplicand and product register addition. Both FACGUARD and ARGGUARD did not
participate in multiplicand and product register addition in the unmodified Applesoft.

The LOADARG routine at @xE9E3 follows MULT processing. LOADARG uses (A/Y) to initialize INDEX and
copy the floating-point number at that address into the ARG floating-point register. LOADARG also manages
ARGSIGN, and with FACSIGN, LOADARG produces a value for XORSIGN. LOADARG initializes ARGGUARD to
@ and exits with the Y-register equal to zero and the A-register equal to FACEXP, a value that each
of the four arithmetic operations check for zero after calling LOADARG. Following LOADARG is the PROCEXP
routine at @xEA1@ which was explained above. Following PROCEXP is the ZEROFERR routine at @xEAZE
that checks for a zero or overflow error, the Overflow error message at @xEA32, and the Division by
Zero error message at @xEA35. Following the error messages are two shortcut routines that multiply or
divide the FAC floating-point register by ten, respectively. The MULFAC1@ routine at @xEA3A utilizes
COPYF2A in order to copy the FAC floating-point register to the ARG floating-point register without using
any roundup facilities as done in the unmodified Applesoft. COPYF2A also copies FACGUARD to ARGGUARD
without modification. MULFAC10 adds the value of 2.0 to FACEXP effectively multiplying the FAC floating-
point register by four, adds the ARG floating-point register to the FAC floating-point register, and increments
FACEXP again, effectively multiplying the FAC floating-point register by two. In effect, MULFAC10
processing produces (4 + 1) * 2 = 10. The DIVFAC10 routine at @xEAS55 follows MULFAC1@. The
DIVFAC10 routine also uses COPYF2A, it uses LOADFAC to load the floating-point parameter value of 10.0,
and then it uses DIV to produce the desired quotient. DIVFAC10 is followed by the Applesoft DIV statement
at OxEA66. DIV processing begins by calling LOADARG to load the ARG floating-point register with the
dividend, a floating-point value that is pointed to by INDEX. The FAC floating-point register already
contains the divisor, the value of the first variable when the expression of the DIV statement is evaluated.
The DIV routine subtracts FACEXP from zero before it calls PROCEXP like in MULT processing as I explain
above. Unlike in MULT processing, however, DIV increments FACEXP and tests FACEXP for zero. I believe
the MULT routine is beautifully written and I could not have offered a better organization for its various
processing units. On the other hand, the DIV routine is not beautifully written and its processing units are
not well organized. Besides the disorganization within the DIV routine, both FACGUARD and ARGGUARD do
not participate in dividend and divisor addition in the unmodified Applesoft. Along with the quotient in
the MULMANT register, FACGUARD provides only two valid upper bits, the most bare minimum of information
for any useful floating-point normalization once the MULMANT register is copied to the FAC floating-point
register and normalized. It is pointless to describe DIV processing in the unmodified Applesoft.

DIV processing in the modified Applesoft initializes the X-register with @xFB as a five iteration counter
and pointer because DIV processing intends to produce four mantissa bytes and one guard byte. The A-
register is initialized with @x@1 so that that register can simultaneously act as an eight bit counter as it
gathers bits for a quotient byte value. At the top of the DIV processing loop, the Y-register is solely
utilized in order to make a preliminary comparison of the dividend and the divisor mantissas along with
their guard bytes, and capture the state of the carry flag before it is shifted into the LSB of the A-register.
If the carry flag is set, DIV processing performs the actual subtraction where the dividend becomes the
minuend and the difference is stored as the new dividend. Whether the dividend is replaced or not, ARGMANT
and its guard byte are shifted one bit to the left and its MSB is shifted into the carry flag. If that carry flag
38

is set or if ARGMANT is positive determine the two conditions that will occur if, indeed, the dividend is still
smaller than the divisor, and another preliminary comparison of the two mantissas at the top of the
processing loop is unnecessary. Only when the carry flag is clear and when ARGMANT is negative does DIV
processing make another preliminary comparison of the dividend and the divisor mantissas. This strategy
is brilliant and it confines all of the DIV processing to what is only necessary in order to efficiently progress
to the next processing iteration. In capturing the state of the carry flag that is shifted into the A-register
from either the preliminary comparison of dividend and divisor or from the shift of ARGMANT one bit to the
left as the A-register is also shifted one bit to the left, and as long as the MSB of the A-register, which
shifts into the carry flag, is clear, the next processing iteration will continue for that quotient byte. Similar
in how the MSB of the A-register is set in MULT processing in order to provide an eight bit counter as
the A-register is shifted right, the A-register provides an eight bit counter as the A-register is
shifted left in DIV processing. As soon as this eight bit counter expires, the X-register is incremented
and that register is used as the index in order to save the quotient byte value that currently resides in the A-
register to MULMANT as the most significant or the next significant byte in the mantissa of the developing
quotient. The X-register is also used to determine if DIV processing should continue to calculate the
next quotient byte value and again initialize the A-register with its counter value of @x@1 or to conclude
DIV processing entirely and save the last quotient byte value to FACGUARD, copy MULMANT into FACMANT,
and normalize the FAC floating-point register. I modified DIV processing and reordered some of its
processing units that optimize its processing flow. Even though I added full FACGUARD and ARGGUARD
participation in DIV processing, I am able to extract twelve processing bytes for other uses. Rather than
produce a FACGUARD with only two valid bits as in the unmodified Applesoft, FACGUARD now contains eight
valid bits prior to FAC floating-point register normalization. DIV processing is far more meticulous and
this additional processing time helps to reduce Applesoft mathematical irregularities in subsequent floating-
point numerical values for those Applesoft arguments where arithmetic division is necessary.

DIV processing falls directly into the COPYMZF routine at @xEAE6. The COPYMZF routine is only used by
MULT and by DIV processing, and this routine jumps directly to floating-point mantissa normalization in
order to finalize the floating-point exponent. Following the COPYMZF routine is the LOADFAC routine at
OxEAF9, and LOADFAC uses (A/Y) to initialize INDEX and copy the floating-point number at that address
into the FAC floating-point register. LOADFAC initializes FACSIGN and it exits with the Y-register equal
to zero, FACGUARD equal to zero, and the A-register equal to FACEXP. Following the LOADFAC routine
is the COPYFAC routine at @xEBZB and its additional entry points for COPYF2T2 at @xEB1E, COPYF2T1 at
OxEB21, and COPYF2FR at @xEB27. The COPYFAC routine is the only register copy routine that calls the
RNDUP routine in order to process FACGUARD and possibly roundup the FAC floating-point register before
COPYFAC saves (X/Y) to INDEX. Before COPYFAC copies the content of the FAC floating-point register to
memory that is pointed to by INDEX, COPYFAC loads the X-register from FACGUARD rather than
destroying FACGUARD and initializing FACGUARD with @ as in the unmodified Applesoft. Following
COPYFAC is the COPYAZF routine at @xEB53 which is written as a register loop routine that saves memory
at the expense of processing time. This routine is only used by ADD processing when LOADARG returns
FACEXP equal to @ and by exponentiation processing. To better serve exponentiation, I extended the
COPYAZF routine and included the copy of ARGGUARD to FACGUARD rather than initializing FACGUARD with
@ as in the unmodified Applesoft. The COPYF2A routine at @©xEB63 immediately follows COPYAZ2F. The
COPYF2A routine is also written as a register loop routine in the unmodified Applesoft and it requires very
little space for this very popular routine that is used throughout Applesoft. For that reason alone, I removed
its register loop in the modified Applesoft and extended this routine into a free area of Applesoft space.
Even though I added three cycles for a JMP instruction, I have tremendously accelerated this routine and I
have copied FACGUARD to ARGGUARD rather than initializing FACGUARD with @ as in the unmodified
Applesoft. In fact, the COPYF2A routine in the unmodified Applesoft does not even touch or update the
value in ARGGUARD. All of the routines that utilize COPYF2A now benefit from having a valid 40-bit
39

mantissa in the ARG floating-point register. The infamous RNDUP routine at @xEB7@ follows COPYFZ2A. The
utilization of this routine alone has been at the center of many of the Applesoft mathematical irregularities
when a floating-point numerical value is passed to subsequent arithmetic operations having only a 32-bit
mantissa when it could easily have a complete and valid 40-bit mantissa.

The SIGNCHK routine at @xEB82 follows RNDUP and SIGNCHK tests FACEXP for having a zero value or
FACSIGN for having a negative or a positive value. If FACSIGN is negative, the A-register is returned
containing @xFF and the C-flag is set. If FACEXP is @, the A-register is returned containing zero and
the C-flag is indeterminate. If FACSIGN is positive, the A-register is returned containing @x@1 and the
C-flag is clear. The value in the A-register and/or the setting of the C-flag are far easier to test for
these simple conditions of the FAC floating-point register. The Applesoft SGN statement at @xEB9@ follows
SIGNCHK, and the SGN routine simply calls SIGNCHK and falls directly into the FLOAT routine at @xEB93 in
order to create a floating-point value of the STGNCHK result using an exponent for a single byte value. SGN
exits through floating-point normalization. The Applesoft ABS statement at @xEBAF simply shifts FACSIGN
one bit to the right, thus shifting a zero bit into its MSB position. If the input argument is negative, for
example, that argument will now be processed as a positive argument. The FPCOMP routine at @xEBB2
follows ABS processing. The FPCOMP routine saves (A/Y) to DEST and compares the floating-point value
at DEST to the value that currently resides in the FAC floating-point register. In order to utilize this routine
more profoundly, I modified the beginning of FPCOMP to initialize the X-register from either ARGGUARD
or from FACGUARD. The X-register is now compared to FACGUARD rather than comparing @x7F to
FACGUARD as in the unmodified Applesoft. Constructing the FPCOMP routine in this fashion allows this
routine to compare the X-register to other values. I also modified the final few instructions of FPCOMP
in order to provide the extra space for X-register initialization, yet these replacement instructions provide
the same result to FPCOMP.

The FP2INT routine at O©xEBF2 follows FPCOMP. The FP2INT routine quickly converts the value in the FAC
floating-point register to an integer value by shifting FACMANT right with sign extension until all of the
fractional bits have been shifted out. The FP2INT routine always assumes that FACEXP is less than thirty-
two, otherwise FPZINT utilizes the two’s compliment of FACMANT before any shifting begins. Directly
following the FP2INT routine is the Applesoft INT statement at @xEC23 and INT converts the FAC floating-
point register into a 16-bit integer and then refloats that integer into a floating-point value using floating-
point normalization. It seems that a faster approach would be to simply clear the lower fractional bits in
FACMANT to zero. INT processing also assumes that FACEXP is less than thirty-two. The INT routine is
still on my list of routines for further study in order to implement a clear means to accelerate this routine.
There are ties to the exponential and power routines that must be considered if any modifications are made
to the current implementation. The CLRMANT routine at @xEC40 follows INT processing and CLRMANT clears
FACMANT to @. This short and simple routine is followed by the very lengthy and complex routine GETINT
at OxEC4A. The GETINT routine is 172 bytes in length and it is comprised of six processing units that
converts a string variable into a floating-point value in the FAC floating-point register. GETINT is called by
INPTLIST, FRMELMNT, and VAL with the first character of the string variable already scanned and in the A-
register. GETINT clears its working area in page-zero from @x99 to @xA3 in order to evaluate a string
variable for its numeric value including +, -, ., and E, as well as + and - that might be associated with E if
scientific notation is encountered in this string variable. The GETINT routine performs as intended unless
the string variable resides at the top of the Character String Pool. In that situation, GETINT may not
encounter a NULL character until somewhere, hopefully, in the @xC0@ page. This situation will always be
problematic for GETINT whenever HIMEM is initialized to @xC0@@. Fortunately, DOS 4.5.08H utilizes main
memory from OxBEQ®@ to @xBFFF, and HIMEM is always initialized to @xBE@@. The GETINT routine uses
CHRGET, DIVFAC10, MULFAC10, NEGFAC, and ADD2FAC for its external resources in order to perform this
string variable to floating-point value conversion. The ADDZFAC routine at @XECF6 follows GETINT. Here
40

is, yet again, another instance where the Applesoft language developers inserted a complete routine in the
middle of another complete routine. The ADDZ2FAC routine is used by LN and GETINT, yet ADDZ2FAC is found
at OxECD5 in the unmodified Applesoft. If there was some advantage for incorporating a routine in the
middle of another routine, I am all ears. So far, I have not heard one rational reason for this programming
style, and I am using the programming description generously. I moved ADD2FAC out of and after GETINT
processing. ADDZ2FAC copies the floating-point value in the FAC floating-point register into the ARG floating-
point register, floats the value that is in the A-register putting that value into the FAC floating-point
register, and calls ADD to add the two registers leaving their sum in the FAC floating-point register.

I did a substantial reorganization of the floating-point values and the routines that come after ADDZFAC and
come before FPOUT. The floating-point values are only used by FPOUT, so they have no business being
positioned anywhere in Applesoft except where I have placed them just before FPOUT. The PRTMSG19
routine, the LINEPRT routine, and MESG19 can be all nicely positioned immediately following ADD2FAC. 1
wanted to insert another carriage return in the PRLINUM routine just before the RESTART routine. DOS
4.5.08H is programmed with my sensibilities to insert an extra carriage return before the next DOS
command line. I have become quite accustomed to how nice and uncluttered this makes the presentation
of the entire monitor display. And, I want to extend that presentation style to Applesoft. Some of the
PRLINUM processing is done by PRTMSG19 at @xEDOA in order to provide the necessary space for that
additional usage of PRTCR. I have modified PRTMSG19 to complete PRLINUM processing and then print
MESG19 as it always has and provide CURLIN, the current line number, in (X/A) to LINEPRT at @xED18.
LINEPRT floats the value received in (X/A) and it uses FPOUT by means of LINEOUT to print that floating-
point number. Because I have the space here at @xED25, I moved MESG19 to this location in order to provide
additional space for the other error messages and for GTFORPNT. The floating-point values that are needed
for FPOUT processing begin at @xED2A and FPOUT processing begins at its normal location at OxED34.

I have already made it abundantly clear why it was unnecessary for the Applesoft language developers to
differentiate between STR statement processing and FPOUT processing. The modified Applesoft does not
differentiate between these two processing routines for the utilization of the STACK. FPOUT can, therefore,
make so much better use of its substantial processing space of 332 bytes. This is one of the more exciting
routines in all of Applesoft, and I thoroughly enjoyed tearing this routine apart and finding ways to not only
accelerate its processing, but to add more capabilities to its processing. FPOUT makes extensive use of the
registers and I found it foolish to maintain the Y-register as the STACK pointer since numeric values as
well as other ASCII characters are saved onto the STACK as the processing unfolds. I devised a subroutine
to manage a true STACK pointer while items are saved onto the STACK. Applesoft is designed to provide up
to nine base-10 digits for display. The Applesoft floating-point variable having eight bits for its exponent
and thirty-two bits for its mantissa is designed intentionally to provide this number of accurate digits. The
FPOUT routine must ensure that it can present those nine digits without mistake by modifying the value in
the FAC floating-point register to reside in a specific numerical range using the MULFAC10 and DIVFAC10
routines. FPOUT processing can then extract the necessary values to place the sign character if necessary,
the number of whole digits, the decimal point, the number of decimal digits, and if scientific notation is
required, an E character, a sign character, and an exponent value. Once the FAC floating-point register is
normalized with an exponent that is equal to @xA@, those various counters for the number of whole digits
and the number of decimal digits can be initialized. FPOUT processing utilizes an incredibly complex
processing loop to determine each and every digit of the floating-point value and in which iteration to place
the decimal point if at all. Certainly, if the number does not contain a fractional component, a decimal point
should not appear in the final integer display. The FPOUT routine in the unmodified Applesoft does not
include a @ placeholder character to the left of the decimal point as in .1234. I find this annoying and very
unattractive when presenting numerical information. Is it so difficult to present such a value in the format
of 0.1234? During which numerical iteration should this @ be written? What are the conditions? I found

41

an easy solution once I understood all of the mechanisms that FPOUT utilizes for making all of its other
decisions. What I found most interesting was how FPOUT ping-pongs between subtracting a base-10 value
in order to ascertain the first numerical value to adding a base-1@ value in order to ascertain the second
numerical value and so forth. And, by design, the FPDECTBL that FPOUT needs for this iteration loop
contains all nine values from 100 million to 1 in order to present up to nine digits for display. Once FPOUT
has written the ASCII data NULL termination byte, FPOUT exits with the address of the STACK in (A/Y).

The Applesoft SQR statement at @xEE8D follows the FPDECTBL table that is used by FPOUT. FPDECTBL
begins at @xEE5C and it ends at @xEE7F. So, there are thirteen bytes from OXEE80 to @xEE8D for use by
SQR processing. The unmodified Applesoft leverages off of the power operator function and uses a value
of @.5 in order to calculate the square root of the input argument to the SQR statement. According to the
Basic Programming Reference Manual for Applesoft][, the Applesoft SQR statement processing is a special
implementation that is said to execute more quickly than x*0.5. However, according to my analysis of SQR
processing, the Reference Manual could not be more incorrect: the FAC floating-point register is initialized
with the value of @.5 and it falls directly into the power operator function to complete its processing. This
processing is exactly like x*0.5. As will be presented in the next section, the power operator function
utilizes the exponentiation of the product from the natural logarithm of the input argument and the value of
the power argument. The power operator function depends on processing two Taylor series expansion
routines and this processing is very expensive in terms of execution time. There does exist an alternative
method to calculate the square root of any positive floating-point number. Isaac Newton, the father of the
Industrial Revolution, was the first person to recognize and to develop an easy to implement root-finding
algorithm which produces successively better approximations to the roots of a real-valued function. When
Newton’s method is applied to finding the square root of a positive floating-point number, it turns out that
this specific algorithm is centuries old dating at least to the ancient Babylonians.

1 A
B =3 (m+3)

n

In this equation, 4 is given as the input argument to the SQR expression and x,, is given as the first guess or
initial value. Selecting an appropriate initial value is the most problematic decision that must be made in
order to significantly reduce the number of iterations to the minimum number possible. In all of my reading
on the Newton-Raphson iteration method, I found no useful recommendations for the initial value. Even
an acquaintance of mine who has a PhD in mathematics could not provide a useful recommendation except
to say that any positive value that is not zero would work just fine for the initial value. After I examined
a few floating-point numbers, both fractional numbers and numbers that are greater than one, I observed
that the exponent of its square root value is typically around half of its given value after EXPBIAS is
removed. And, that is precisely why the Applesoft language developers utilized the natural logarithm and
the exponentiation routines. If the natural logarithm of a number is multiplied by 2, for example, when e
is raised to that power, the original number is now squared. Because I had sufficient space within Applesoft
for the design and the implementation of an algorithm that utilizes the Newton-Raphson iteration method,
my new SQR algorithm begins with the utilization of the STGNCHK routine. If the input argument to the SQR
function is zero, there is nothing further to do. If the input argument to the SQR function is negative, I
issue the I1legal Quantity error message and I terminate further processing. Otherwise, I copy the FAC
floating-point register to the T1 floating-point register and process FACEXP which is already in the A-
register. This simple processing provides me with a very good first approximation for x,,. Because this
iterative method is so efficient in calculating a square root value, I setup a loop counter for a maximum of
seven iterations. I save the first approximation as well as every successive approximation to the T3 floating-
point register. The T3 floating-point register is the only other floating-point register besides the FAC and
the ARG floating point registers that includes a guard byte. The T3 floating-point register and its guard byte
42

is my design; it is not the design of the Applesoft language developers. All of the T3 register copy routines
include the copy of the appropriate guard byte. Of course, utilizing the T3 floating-point register with the
DIV routine and followed by the ADD routine provides far more arithmetic accuracy. Furthermore, I take
advantage of my modified FPCOMP routine for a more accurate comparison of the new approximation in the
FAC floating-point register with the previous approximation that was saved in the T3 floating-point register.
If FPCOMP finds that the two floating-point values are equal or if the iteration counter expires, SQR
processing exits into the RNDUP routine in order to return the finalized floating-point square root value.

Transcendental Arithmetic Operations

Applesoft is only generally divided into its collection of statements and routines that perform transcendental
arithmetic operations. These arithmetic operations include power, exponential, random number, cosine,
sine, tangent, and arctangent calculations. The following is a collection of Applesoft statements and
routines that perform transcendental arithmetic operations.

The Applesoft A statement at @xEE97 is the power operator function in Applesoft and it directly follows
SQR processing. Originally, SQR processing utilized the Applesoft power function and SQR processing
simply fell into the power function with the FAC floating-point register initialized with the parameter value
of @.5. The power function utilizes the following expression in calculating its power function value into
the FAC floating-point register:

FAC=EXP[LNCARG) * FAC]

The floating-point value that is being raised to some power is found in the ARG floating-point register and
the floating-point value that is equivalent to the power is found in the FAC floating-point register when the
power expression is evaluated. Both FACEXP and ARGEXP are tested for zero and processing terminates if
either exponent is zero. The FAC floating-point register is copied to the T3 floating-point register and
ARGSIGN determines whether to process the FAC floating-point register as an integer and compare it to the
T3 floating-point register or simply note that the value in the ARG floating-point register is positive. If the
ARG floating-point register is positive, the FAC floating-point register may contain either a positive or a
negative floating-point value. If the ARG floating-point register is negative, the FAC floating-point register
may only contain any positive or negative integer value. In this case, if the FAC floating-point register does
contain a floating-point value, the I1legal Quantity error message is issued and further processing
terminates. The ARG floating-point register is copied to the FAC floating-point register and its natural
logarithm is calculated. That natural logarithm in the FAC floating-point register and the T3 floating-point
register are multiplied, and the exponential of their product is calculated. Both the T3 floating-point register
and the FAC floating-point register provide a full 4@-bit multiplicand and multiplier, respectively. If the sign
that was initially determined is negative, the power function falls into the NEGFAC routine, otherwise, the
power function exits with its power function value in the FAC floating-point register. The Applesoft >
statement at @xEEDQ is the greater than operator function in Applesoft or the NEGFAC routine, and it directly
follows the A processing. The NEGFAC routine exits if FACEXP is zero, otherwise the routine exclusively-
ORs FACSIGN with @xFF.

The eight Taylor series exponential polynomials at ©xEEE®@ follow the NEGFAC routine. These polynomials

are used to service and conclude exponential processing. Following the eight exponential polynomials is

the Applesoft EXP statement at @xEF@9. EXP processing calculates e to the power of the input value that
43

currently resides in the FAC floating-point register when the EXP expression is evaluated. EXP processing
exits with its result in the FAC floating-point register. EXP processing converts the input value to a power
of 2 by multiplying the input value times the base-2 log of e. The base-2 log of e is the natural log of e
divided by the natural log of 2, or In(e)/In(2) =1/1In(2) = 1.442695041. The FAC floating-point
register is processed by RNDUP and then copied to the ARG floating-point register. FACEXP must be less than
0x88 in order to continue processing, otherwise an Overflow error message is generated and processing
terminates. The FAC floating-point register is converted into an integer in order to generate a new exponent
for the final fractional value. I have absolutely no idea why this routine copies the ARG floating-point
register into the FAC floating-point register using exactly the same procedure as that used in the COPYA2F
routine, subtracts the two registers, and then negates the FAC floating-point register. Only an adolescent,
perhaps a developer, did not realize that -(ARG — FAC) = (FAC - ARG). This bit of nonsense is deleted
in the modified Applesoft and only the registers as they are found are subtracted. A modified Taylor series
expansion is utilized in order to process the value that is obtained from the floating-point register difference.
The saved exponent is added to the final value that is obtained after polynomial processing. The Taylor
series expansion for e to the power of any input value x is given as follows.

This Taylor series expansion will converge moderately quickly. The Applesoft language developers
modified the exponential polynomials as shown in Table 9 from their theoretical values by increasing the
polynomials that have even factorials and decreasing the polynomials that have odd factorials. I have no
access to the details as to how these pre-calculated polynomial values that are shown in Table 9 were
mathematically modified and the mathematical rationale that was utilized for those modifications.

Polynomial Index | Applesoft Value | Base-10 Value | True Value Base-10 Value

Entries - 1 0x00 0x07 7 0x07 7
(In(2O)A7)/71*xA7 | 0x01 0x71 34583E56 |2.14987637E-05 | Ox70 7FESFEZ2B |1.525273380E-05
(In(2)76)/6!*xA6 | Ox06 0x74 167EB31B |1.43523140E-04 | Ox74 2184897B |1.540353039E-04
(In(2)A5)/5!1*xA5 | 0Ox@B Ox77 2FEEE385 |1.34226348E-03 | Ox77 2EC3FF3E |1.333355815E-03
(In(2)74) /41 *xA4 | 0x10 Ox7A 1D841C2A |9.61401701E-03 | @x7A 1D955B7E |9.618129108E-03
(In(2)A3)/3!*xA3 | 0x15 0x7C 6359580A |0.0555051269 0x7C 635846B8 |0.05550410867

(In(2)A2)/21*xA2 | Ox1A Ox7E 75FDE7C6 |0.240226385 Ox7E 75FDEFFD |0@.2402265070
1n(2)/1!*x Ox1F 0x80 31721810 |0.693147186 0x80 317217F8 |0.6931471806
1.0 0x24 0x81 00000000 |1.0 0x81 00000000 |1.0

Table 9. Applesoft Exponential Function Polynomials

Two short Applesoft statement routines directly follow the EXP statement routine which includes the
Applesoft LOG statement at @xEF3E and the Applesoft PI statement at @©xEF48, both made possible by the
smart elimination of the register copy and the register negation routines in EXP processing. The LOG routine
converts the natural logarithm of the input argument that is evaluated from the LOG expression to the base-
10 logarithm simply by multiplying the value of the natural logarithm and the value of base-10 LOG (e).
The PI routine uses LOADFAC in order to initialize the FAC floating-point register with the floating-point

44

parameter value of PI, initialize FACSIGN with @, and initialize FACGUARD with FPTIGUARD, or the last eight
bits of the 40-bit PT mantissa. Having the value of PI readily available as an Applesoft statement prevents
having to fumble around for that value or some close approximation to the value of PI and have it already
in floating-point format with a full 4@-bit mantissa. How excellent is that?

Applesoft polynomial processing comes in two flavors: sequential or normal polynomial processing as in
exponential polynomial processing and odd polynomial processing as in natural logarithm polynomial
processing. Odd polynomial processing depends on normal polynomial processing after odd polynomial
processing has prepared the FAC floating-point register with its x? value rather than with its x value.
Because there is sufficient space in the modified Applesoft, the sine function can use the POLYSIN entrance
at OxEF57 to initialize (A/Y) for COEFPTR at @xEF5B rather than during sine processing. Otherwise,
POLYPROC is the general entrance at @xEF5B for odd polynomial processing. POLYPROC uses COPYF2T1 in
order to copy the FAC floating-point register to the T1 floating-point register, the registers are multiplied,
and the POLYNOM routine is used to process x2 with the polynomials whose address is already found at
COEFPTR. Once POLYNOM processing is complete, the POLYPROC routine finishes by multiplying the FAC
floating-point register with the value that was saved in the T1 floating-point register. The POLYNOM routine
at OxEF71 directly follows POLYPROC and POLYNOM is normal polynomial processing. This routine uses
the COPYF2TZ2 routine in order to save the FAC floating-point register to the T2 floating-point register. I
modified the general purpose COPYFAC routine to always load the X-register with the value in FACGUARD
so that FACGUARD is readily available whenever it might be required. The POLYNOM routine makes use of
this COPYFAC feature and it saves the X-register to T2GUARD, a new variable that I added to the modified
Applesoft. POLYNOM extracts the number of coefficients from COEFPTR, increments COEFPTR, and points
(A/Y) to the first coefficient in the list of polynomials. Coefficient processing is a very dense processing
loop that begins by loading the ARG floating-point register from either a coefficient address or from a register
address into (A/Y) and saves the value that is in the X-register to ARGGUARD which is new to POLYNOM
processing. In effect, this is my attempt to make use of 4@-bit mantissas in very dense processing loops
such as POLYNOM processing. The FAC and ARG floating-point registers are multiplied, COEFPTR is modified
to point to the next coefficient, the new coefficient is added to the FAC floating-point register, (A/Y) now
points to the T2 floating-point register, the X-register is loaded from T2GUARD, the number of coefficients
is decremented, and if the number of coefficients is not zero, processing continues at the beginning of the
POLYNOM processing loop. No matter how many times I review this dense processing loop, I am filled with
awe at how incredible the Applesoft language developers utilized the fundamental Applesoft floating-point
arithmetic operations to compute a beautiful Taylor series expansion.

I can only chuckle at the level of disgust that I have for the Applesoft language developers when it comes
to the routine that directly follows their brilliant POLYPROC and POLYNOM routines. Surely, did the same
developers produce all of the incredible Taylor series expansion routines also produce the Applesoft RND
statement at @xEFAE? I am not sure if that is even possible. The two integer values at @xEFA6 and OxEFAA
that precede the RND statement have given previous Applesoft reviewers issues in understanding why these
variables are not five bytes in length. Are they not floating-point variables? They are used as floating-
point variables by floating-point arithmetic operations. What is going on in the RND routine?

The random number generator that is utilized in the unmodified Applesoft is faulty, and an article RND is
Fatally Flawed was submitted to Call A.P.P.L.E. and printed in the January, 1983, issue on pages 29-34.
This article also presents an alternative routine. Applesoft initialization only copies the first four bytes of
the five-byte variable that is utilized as the seed for the next random number iteration. This seed is utilized
in the random number generator as a floating-point number rather than as an integer. The random number
generator is conflicted in that it attempts to implement a Linear Congruential Generator, or LCG equation
using floating-point variables. The Applesoft generator even resorts to byte swapping the first and the third

45

bytes of the final mantissa, a technique that is said to be of last resort even for a lousy implementation of a
random number generator. The two four-byte variables that come before the RND routine are used as
floating-point variables. Applesoft floating-point variables must be five bytes in size with one byte for the
exponent and four bytes for the mantissa. The assumed exponent in these four-byte variables, @x98 for the
first and used as a multiplier and @x68 for the second and used as an addend, differ by @x30. Any exponent
difference that is greater than @x20 cannot be accommodated by an Applesoft normalization routine. Are
these two numbers indeed floating-point variables or are they truly 32-bit integers? What Mr. Sander-
Cederlof does not explain in his article Random Numbers for Applesoft in the May, 1984, magazine Apple
Assembly Line, is why the Applesoft RND routine fails to generate more than a few thousand random
numbers before the full period of its sequence is reached. He does offer three useable routines that are
better algorithms according to Donald Knuth in his series of books The Art of Computer Programming. In
Volume 2 Seminumerical Algorithms, pages 155 to 157, Knuth discusses using a standard LCG in order to
easily generate random numbers. The Applesoft RND routine is written as if it is trying to implement an
LCG using floating-point variables. The equation for the standard LCG is given as follows:

Xps1 = X, x A+ C)mod(M)

An LCG is an algorithm that yields a sequence of pseudo-randomized numbers that are calculated with a
discontinuous piecewise linear equation. The method represents one of the oldest and best-known pseudo-
random number generator algorithms. The values for A, C, and M are integer constants. Historically, poor
choices for A have led to ineffective implementations of LCGs. Choosing M to be a power of two such as
232 often produces a particularly efficient LCG. Correctly choosing the constants A and C will allow a
sequence period equal to M. This will occur if and only if 1) M and C are coprime, 2) A-1 is divisible by all
prime factors of M, and 3) A-1 is divisible by four if M is divisible by four. Typically, LCGs are fast and
require minimal memory. This makes them valuable for simulating multiple independent streams. LCGs
are not intended, and must never be used for cryptographic applications. In practice, LCGs are not suitable
for large-scale Monte Carlo simulations.

Knuth specifies M to be 232 when A and C are 32-bits in size, so four-byte integer variables are used for A
and C in the above equation. Based on the above three rules that Knuth describes in his book, he specifies
that A should equal @x12B9B0OAS5 and C should equal @x361962EA. These two values are quite different
from the values that are found in the unmodified Applesoft. Applesoft uses @x9835447A for A and
0x6828B146 for C. Where Applesoft goes terribly wrong in implementing the LCG equation shown above
is that Applesoft uses these two variables as floating-point arguments and processes them with floating-
point arithmetic operations. Applesoft multiplies the seed at IRAND with its value of A and adds to that
product its value of C. Applesoft then implements a modulo 232 by changing the resulting exponent to
0x80 before it normalizes the floating-point value with the final mantissa. Simply stated, floating-point
numerical operations are designed to preserve the most significant bits and discard the least significant
bits during the implementation of those arithmetic operations. This is not what is intended for the design
of an LCG that requires a modulo. Specifically, a modulo dictates that the least significant bits are to be
preserved and the most significant bits are to be discarded. A Peasant integer multiply routine will easily
provide the necessary computation. Mr. Sander-Cederlof provides his 32-bit integer multiply routine
claiming that it is tricky and that it uses a minimum of variable and program space. I do agree that the
multiply routine that Mr. Sander-Cederlof presents is vastly tricky, yet it is not extraordinary by any means.
I have great respect for Mr. Sander-Cederlof and he has written a vast amount of revolutionary software.
However, in this particular instance, the simple Peasant integer multiply routine that I have chosen to use
in my random number generator is smaller in size and faster in overall computation.

46

Every culture throughout history teaches their children the method or the algorithm that that culture uses in
order to multiply two integer numbers by hand. Some cultures emphasize learning multiplication tables
whereas other cultures emphasize learning how to quickly divide by two and multiply by two. The later
method is known as the Peasant integer multiply routine. The multiplier is checked for even or oddness
and then it is halved, any remainder is tossed, and the new value is written below. The multiplicand is
scratched out if the multiplier is even, then it is doubled, and the new value is written below. All of the
retained multiplicand values are added in order to form the product. That is precisely how the Peasant
integer multiply routine operates. The multiplier resides in the MULMANT register and it contains the four-
byte variable A. The multiplicand resides in ARGMANT and it contains the four-byte seed IRAND. The four-
byte variable C is copied into FACMANT which serves as the product register. After the multiplier in MULMANT
is shifted right and if the C-flag is set noting an odd number, the multiplicand in ARGMANT is added to the
product in FACMANT. Whether an addition occurs or not, the multiplicand is shifted left thus doubling its
value. Any MSB bit that is shifted into the C-flag by ARGMANT is discarded. Using four bytes in each of
these registers ensure that modulo 232 remains in force throughout the required thirty-two iterations.

My RND routine is engineered somewhat similar to how Mr. Sander-Cederlof designed his RND routine
which he linked to the Apple USR function. If a negative integer argument is provided to the RND routine
as in RND(-1234), for example, RND saves that value to IRAND as a positive 32-bit integer which will be
the seed for the next random number iteration. If a zero argument is provided to RND as in RND(@), RND
returns the value that is saved in IRAND as a positive integer value that has a range from zero to 231 — 1,
or 0x0000000 to Ox7FFFFFFF. If a positive integer argument that is equal to 1 is provided to RND as in
RND(1), RND returns a fractional value that has a range from zero to less than 1 which is simply the integer
value that is saved in IRAND divided by 232. Finally, if a positive integer argument that is equal to a value
that is greater than 1 is provided to RND as in RND(192) or RND(280@), for example, RND returns an integer
value that has a range from zero to the supplied integer value minus one. My RND routine captures the
integer value of the argument that is provided to RND when the RND expression is evaluated, and if that value
is greater than zero, that value is saved to the T1 floating-point register as a Range which is a normalized
floating-point number. Once the processing of the LCG equation that is shown above is complete, an
exponent of @x8@ is stored in FACEXP and that 32-bit product integer is normalized as a floating-point
number using NORMFAC1. If a Range of 1 is supplied to RND, the normalized floating-point fraction is
returned unaltered to the user. Otherwise, that floating-point fraction is multiplied by the value that is stored
in the T1 floating-point register using MULT, its product is converted to an integer value by INT, and the
result is returned to the user as a random number integer value.

The Applesoft COS statement at OxEFEA takes the value that resides in the FAC floating-point register, the
value in radians that is derived from evaluating the COS expression, and adds to it /2. COS processing
then falls directly into the Applesoft SIN statement at @xEFF1. The Applesoft language developers are not
implementing a trigonometric identity between COS and SIN, but Applesoft computes COS(x) = SIN(x +
n/2) simply to extract the sign of the generated numerical value since the COS function lags the SIN
function by /2. SIN processing spends over 6@ bytes of processing instructions transforming the input
argument to reside entirely in Quadrant 1 while taking note of its sign as if the input argument actually
resides in its intended quadrant. I have no doubt that there are far easier transformation methods, but the
floating-point parameters that are required by this processing already exist in Applesoft. Once quadrant
transformation is complete, the input argument is processed by a Taylor series of SIN polynomials. The
six pre-calculated polynomials in the unmodified Applesoft are modified from the normal Taylor series
polynomials, yet these polynomials do yield precise values particularly for angles that are not near the limits
of this function, that is, near zero and near n/2. The Taylor series that is utilized by the Applesoft SIN
statement is expressed as follows.

47

sin(x) = Z(—nkh
k=0

2k+1

This Taylor series will converge because the sign of the terms alternate, the factorial denominators become
far greater than their numerators, and the radius of convergence is at infinity. Are these six polynomials
sufficient for Applesoft to provide a minimum of nine digits of accuracy for the SIN statement, for the COS
statement, and for the TAN statement where both COS and TAN processing depend on SIN processing?

Polynomial Index | Applesoft Value | Base-10 Value | True Value | Base-10 Value
Entries - 1 0x00 0x05 5 0x@5 5

-(2r)A11/111*xA11 0x01 0x84 E61A2D1B -14.3813907 0x84 F183A7VEF | -15.09464258
(27)N9/91*xA9 0x06 0x86 2807FBF8 42.0077971 0x86 283C1A44 42.05869395
-(2rA7/7V¥xA7 0x0B 0x87 99688901 -76.7041703 0x87 99696673 | -76.70585975
(2r)AS5/51*xA5 0x10 0x87 2335DFE1 81.6052237 0x87 2335E33C 81.60524928
-(21)A3/31%xA3 0x15 0x86 A55DE728 -41.3417021 0x86 AS55DE731 | -41.34170224
(2r)*x Ox1A 0x83 490FDAAZ 6.283185307 0x83 490FDAAZ 6.283185307

Table 10. Applesoft Sine Function Polynomials

Polynomial Index Real Value | Base-10 Value
Entries -1 0x00 Ox0A 10

(2r)A21/211%xA21 0x01 0x77 143B8107 0.001130924
(2rn)A19/191*xA19 0x06 Ox7A (5202109 0.012031586
(2r)A17/17 1 ¥xA17 0x0B 0x7D 55761958 0.104229162
-(2n)A15/151*#xA15 0x10 0x80 B7D6DCF9 | -0.718122302
(2n)A13/131%xA13 0x15 0x82 747A1A68 3.819952585
-(2r)A11/111*xA11 Ox1A 0x84 F183A7EF | -15.09464258
(2n)N9/9!*xA9 Ox1F 0x86 283C1A44 | 42.05869395
-(2rNT/ 7V ¥xN7 0x24 | 0x87 99696673 | -76.70585975
(2r)AS5/51*xA5 0x29 0x87 2335E33C 81.60524928
-(2r)A3/31*xA3 Ox2E 0x86 AS5DE731 | -41.34170224
(2n)*x 0x33 0x83 490QFDAAZ 6.283185307

Table 11. Expanded Applesoft Sine Function Polynomials

Table 10 lists the six pre-calculated polynomials that are used for the unmodified Applesoft SIN statement.
Table 10 also includes the theoretical values for these six pre-calculated polynomials which exposes a
degree of mathematical manipulation to these SIN polynomials. I determined that if the theoretical pre-
calculated values for these six polynomials are utilized in Applesoft instead, sufficient calculation
differences are obtained from the Applesoft SIN function that are not trivial. There are ten unreferenced
bytes at @xF@94 that can be eliminated. These bytes, a little example of narcissism, when exclusively-ORed

48

with @x87 produce the unusable backward ASCII string MICROSOFT! Also, moving the initialization of
(A/Y) to POLYSIN and modifying SIN processing to support TAN processing provide sufficient space to
add six more pre-calculated SIN polynomials as shown in Table 11, and a modified Applesoft image can
be generated. I have yet to find any difference in the output of the unmodified Applesoft versus the modified
Applesoft when eleven pre-calculated polynomials are used for SIN processing. I have observed that the
five pre-calculated polynomials that the Applesoft language developers mathematically modified for the
unmodified Applesoft produce the same results as if eleven accurately pre-calculated polynomials are
utilized for SIN processing. Without knowing any details as to how the pre-calculated polynomials were
mathematically modified and the mathematical rationale that was utilized for those modifications, I prefer
to calculate the SIN function using the eleven accurately pre-calculated polynomials that are shown in Table
11. At this time, sufficient space is currently available for those additional pre-calculated polynomials. I
will, of course, relinquish those 3@ bytes of space when and if I absolutely require other functionality.

The Applesoft TAN statement at @xF@3A utilizes SIN processing twice since TAN(x) = SIN(x) / COS(x).
The SIN function has been designed to provide the necessary signal to the TAN function when the input
argument resides in another quadrant other than Quadrant 1. This signal provides proper sign management
for the final value. How SIN implements this signal is inefficient, it forces SIN to manage the STACK, and
it forces TAN to enter SIN processing indirectly by means of a weird JSR/JIMP construction. I was able to
unravel this entire programming mess simply by introducing a page-zero value called SIGNFLG that uses
the unused fifth random number seed byte at @xCD. These modifications have reduced both SIN and TAN
processing and have accelerated both routines. The TAN routine saves the 4@-bit SIN mantissa value in the
T3 floating-point register, obtains the 4@-bit COS mantissa value in the FAC floating-point register, copies
the T3 floating-point register to the ARG floating-point register, and divides those two registers while
utilizing both FACGUARD and ARGGUARD. TAN utilizes the most accurate floating-point arithmetic operations
that are possible in the modified Applesoft, and it maintains 4@-bit mantissas throughout the POLYPROC and
POLYNOM polynomial processing.

The Applesoft ATAN statement at @XFOIE directly follows the eleven SIN polynomials which begin at
0xF066 and end at @xFOID. In order to compute the arctangent, the input argument after evaluating the
ATAN expression must be folded into the range of [-1,1] in order to utilize a Taylor series expansion. If the
argument is greater than 1, its reciprocal is used and noted along with its sign, thus reducing its effective
range to [0,1]. I did make a slight modification to the ATAN routine to help accelerate its processing. This
Taylor series expansion converges slowly, particularly for an argument that is close to one. Hence, ATAN
polynomial expansion is very inefficient. The final output value of the ATAN routine is always in radians.
The Taylor series expansion for the ATAN function for any input value x is given as follows:

X2k+1

2k+1

tan"1(x) =) (—1)k

The final value is subtracted from 2 after Taylor series expansion if the input argument is inverted. If the
input argument is negative, the final value is complimented by NEGFAC. As stated above, this Taylor series
expansion is very slow to converge. Isaac Newton suggested a means to accelerate this convergence that
was later published by Leonhard Euler. The Applesoft language developers modified the polynomials that
are shown in Table 12 from their theoretical values. These polynomials begin at @xFOCC, they end at
0OxF108, and they grow substantially smaller as the denominator increases in value. I have found that the
sample test data that I utilized in order to compare the angle values that the Applesoft ATAN routine generates
versus the angle values that a modern day computer generates agree to all nine fractional digits. I have no

49

access to the details as to how these pre-calculated polynomials that are shown in Table 12 were
mathematically modified and the mathematical rationale that was utilized for those modifications.

Polynomial | Index | Applesoft Value | Base-10 Value True Value | Base-10 Value
Entries -1 0x00 0x0B 11 0x0B 11

-(1/23)*xA23 0x01 0x76 B383BDD3 |-6.84793912E-04 | 0Ox7C B21642D1 -0.043478261
(1/21)*xA21 0x06 0x79 1EF4A6F5 4.85094216E-03 | 0x7C 430C30DE 0.047619048
-(1/19)*xA19 0x0B Ox7B 83FCBO10 |-0.0161117018 Ox7C D79435EA -0.052631579

(1/17)*xA17 0x10 0x7C OC1F67CA 0.034209638 Ox7C 7@QFQF@D5 0.058823529
-(1/15)*xA15 0x15 Ox7C DE53CBC1 |-0.0542791328 Ox7D 88888893 -0.066666667
(1/13)*xA13 Ox1A 0x7D 1464704C 0.0724571965 Ox7D 1D89D8AO 0.076923077
-(1/11)*xA11 Ox1F Ox7D B7EA517A |-0.0898023954 Ox7D BAZ2E8BA6 -0.090909091
(1/9)*xA9 0x24 0x7D 6330887E 0.110932413 Ox7D 638E38EQ 0.111111111
-(L/7)*xA7 0x29 Ox7E 9244993A |-0.142839808 Ox7E 92492496 -0.142857143
(1/5)*xA5 Ox2E Ox7E 4CCC91C7 0.19999912 Ox7E 4CCCCCCD 0.2
-(1/3)*xA3 0x33 Ox7F AAAAAA13 |-0.333333316 Ox7F AAAAAAAB -0.333333333
1.0*x 0x38 0x81 00000000 1.0 0x81 00000000 1.0

Table 12. Applesoft Arctangent Function Polynomials

Applesoft Initialization & Miscellaneous Statements

Applesoft is only generally divided into its collection of statements and routines that manage the
initialization of Applesoft. This section of Applesoft also includes several miscellaneous statements. The
following is a collection of Applesoft statements and routines that initialize Applesoft and conclude
Applesoft I that was purchased from Microsoft.

The architecture of the 6502-microprocessor, and later the 65C02-microprocessor, addresses three vectors
at the very top of its 16-bit address capability. These vectors include the non-maskable interrupt vector, or
NMI vector at OxFFFA:@xFFFB, the RESET vector at @xFFFC:@xFFFD, and the maskable interrupt vector,
or IRQ/BRK vector at OxFFFE : @xFFFF. A non-maskable interrupt cannot be disabled or ignored using either
processor instructions or software masks. On the other hand, a maskable interrupt can be disabled or
ignored and then re-enabled. The 6502 or the 65C02 instruction set contains the SEI instruction to disable
a maskable interrupt and the CLI instruction is used to enable a maskable interrupt. When the Apple][
computer is powered on, the 6502-microprocessor automatically loads the RESET vector at
OxFFFC:0xFFFD into the program counter and it continues to fetch instructions beginning from the address
that is stored at that location. The ROM RESET handler address that is stored in the RESET vector is memory
address OxFAG2. After the ROM RESET handler has initialized the annunciators, the window specifications,
its CSWL and KSWL interface pointers, and XMODE for the Apple //e, the handler directly enters the NEWMON
routine at memory address @xFA81. After ringing the bell at @xFF3A, the NEWMON routine calculates its own
PWRSTATE value and compares that calculation to the value it finds at @x3F4. If the comparison fails, the
hardware is powering up and the NEWMON routine branches to the PNRUP routine at memory address @xFAAG.
Otherwise, the routine falls into the NEWMONZ routine that initializes AUTORSET at @x3F2 with a non-zero

50

value of @x@3 and jumps directly to BASIC which is at @xEQQ@. The @xEQ@Q location as well as the
OxE@03 location for a jump directly to the Applesoft RESTART routine, occur in the middle of the Applesoft
PTRGET routine. The @xE@Q®@0 location contains a jump directly to the COLDSTRT routine at @xF125 in the
modified Applesoft. The COLDSTRT entry address is @xF128 in the unmodified Applesoft. That three-byte
difference comes from accelerating ATAN processing and removing the fifth byte of the random number
generator seed which is unnecessary.

Prior to the COLDSTRT routine and just after the ATAN polynomials are the infamous CHRGET and CHRGOT
routines as well as the four-byte random number generator seed. There have been reports that Cornelis
Bongers devised a shorter and accelerated CHRGOT routine. Since this routine utilizes 24 bytes of page-zero
memory at @xB1:C8, that would have been an awesome accomplishment. The CHRGOT routine absorbs the
SPACE character 0x20, it clears the C-flag for a numeric value @x30:39, and it sets the C-flag for all
other ASCII values. What is more interesting is that CHRGOT sets the Z-f1ag if that input character happens
to be a colon :. The random number generator seed resides at @xC9:CC following CHRGOT. Many of the
initializations that are performed by the COLDSTRT routine are ridiculous and they serve no purpose or
benefit. I have removed all of these particular initializations in the modified Applesoft. The Applesoft
COLDSTRT routine sets the Direct Mode flag and the STACK pointer, creates four jump vectors, copies
CHRGET, CHRGOT, and the random number generator seed to page-zero, initializes some flags and a pointer,
and determines the end of RAM memory. The end of RAM memory is the location where MEMSIZE and
FRETOP are initialized. Memory location @x@800 is initialized to zero and PRGTAB is initialized to 0x0801,
the beginning address for an Applesoft program. DOS 4.5.08H provides the capability to load and to run
an Applesoft program at any selected address by initializing PRGTAB to an address that is greater than or
equal to @x@801. I did add the initialization of HRSCALE to COLDSTRT processing because there was
sufficient space. The Applesoft COLDSTRT routine calls CKSTRSIZ in order to check the amount of memory
between arrays and strings, which is of rather dubious value since FRETOP was just initialized to its
maximum value possible. The call to SCRTCH initializes RUNFLAG, VARTAB, and PRGEND and falls into
SETPTRS as previously described. Finally, the Applesoft COLDSTRT routine completes the initialization of
two USER vectors and jumps directly to the RESTART routine at @xD43C. I have used the reclaimed space
from the Applesoft COLDSTRT routine from @xF1B1 to F1D4 for additional FRMSTAK4 processing at @xF1B1,
the new Applesoft COPYF2T3 routine at @xF1BA, a new Applesoft routine that increments the coefficient
pointer for polynomial processing at @xF1C5, and a new Applesoft routine that initializes the MULMANT
register to zero at @xF1CC. The COPYF2T3 routine first copies FACGUARD to T3GUARD, a new page-zero
variable, and then this routine initializes the X-register and the Y-register with the address of the T3
floating-point register. The COPYF2T3 routine uses the COPYFACZ entry point in order to copy the floating-
point number from the FAC floating-point register into the T3 floating-point register.

The Applesoft CALL statement at @xF1D5 follows the CLEARMUL routine that clears the MULMANT floating-
point register to zero for the MULT routine. CALL processing evaluates its input expression and converts
that value into a 16-bit integer value that is saved in LINNUM. CALL processing simply jumps indirectly to
that LINNUM address. The Applesoft IN statement at @xF1DE follows CALL processing. IN processing
evaluates its input expression and converts that value into an 8-bit integer value and leaves that value in the
FAC floating-point register. The CONVINT routine copies the least significant byte of FACMANT into the X-
register and returns that value to IN. IN copies the value that is in the X-register into the A-register
so that that value can be utilized by the INPORT routine at @xFE8B in the ROM Monitor. The Applesoft PR
statement at @xF1E5 follows IN processing and PR processing evaluates its input expression in exactly the
same fashion as IN processing. The value that is in the X-register is copied into the A-register so that
that value can be utilized by the OUTPORT routine at @xFE95 in the ROM Monitor.

51

Management of LORES and HIRES Graphics

Applesoft is only generally divided into its collection of statements and routines that manage the various
LORES and HIRES graphics. These graphic routines include PLOT, POSN, HRPLOT, DRAW, XDRAW, and HLIN.
The following is a collection of Applesoft statements and routines that manage the various LORES and
HIRES graphics.

The Applesoft PLOTFNS routine at @xF1EC follows PR processing. The PLOTFNS routine is used by the
SCRN(statement, the LINCOOR routine, and the Applesoft PLOT statement. This routine evaluates an
expression in order to extract the first coordinate value and the second coordinate value. The first coordinate
value is saved to FIRST and the second coordinate value is saved to HZ and V2. Each comma separated
value is verified to be less than 48, otherwise Applesoft issues the I11legal Quantity error message. The
Applesoft LINCOOR routine at @xF2@9 follows the PLOTFNS routine. The LINCOOR routine is used by the
Applesoft HLIN statement and by the Applesoft VLIN statement for LORES graphics. The LINCOOR routine
utilizes the PLOTFNS routine in order to obtain the start and the end screen coordinates, and it swaps those
coordinates if the start coordinate is larger than the end coordinate. Next, the LINCOOR routine verifies the
presence of the Applesoft AT statement, and it continues to evaluate the expression for a third screen
coordinate value. The third screen coordinate value is verified to be less than 48, otherwise Applesoft
issues the Illegal Quantity error message. The Applesoft PLOT statement at @xF225 follows the
LINCOOR routine. The PLOT routine utilizes the PLOTFNS routine to obtain the first and the second
coordinate values and verifies that the first coordinate value is less than 40, otherwise Applesoft issues the
Illegal Quantity error message. Applesoft PLOT utilizes the services of ROM Monitor PLOT at @xF800.
The Applesoft HLIN statement at @xF232 follows PLOT processing. HLIN utilizes LINCOOR to evaluate its
expression for three coordinate values and verifies that the second coordinate value is less than 40,
otherwise Applesoft issues the Illegal Quantity error message. HLIN also utilizes the services of the
HLINE routine at @xF819 in the ROM Monitor. The Applesoft VLIN statement at @xF241 follows HLIN
processing. VLIN utilizes LINCOOR to evaluate its expression for three coordinate values and verifies that
the third coordinate value is less than 40, otherwise Applesoft issues the I11legal Quantity error message.
VLIN utilizes the services of the VLINE routine at @xF828 in the ROM Monitor.

The Applesoft COLOR statement at @xF24F follows VLIN processing. COLOR evaluates its input expression
and converts that value into an 8-bit integer in the X-register, copies the value into the A-register, and
sets the LORES graphic COLOR variable using the SETCOL routine at @xF864 in the ROM Monitor. The
Applesoft VTAB statement at @xF256 follows COLOR processing. VTAB evaluates its input expression and
converts that value into an 8-bit integer in the X-register, decrements that register, and verifies that the
final value is less than 24. The VTAB statement accepts an input range of 1:24 and converts that range to
0:23 in order to utilize the TABV routine at @xFB5B in the ROM Monitor. The Applesoft SPEED statement
at OxF262 follows VTAB processing. SPEED evaluates its input expression and converts that value into an
8-bit integer in the X-register, copies the value into the A-register, exclusively-ORs that value with
OxFF, and saves that final value to SPEEDBYT in the modified Applesoft. In the unmodified Applesoft, the
final value is incremented so that the fastest Applesoft speed is @x@1 and the slowest Applesoft speed is
0x00 which is based on the call to WAIT in OUTCHR. I found that adding any unnecessary wait to Applesoft
was outrageous and unacceptable. The modified Applesoft accepts the default input speed of 255, converts
that to @, and the modified OUTCHR routine bypasses the call to WAIT when SPEEDBYT is zero. The
Applesoft TRACE statement at @xF26D follows SPEED processing and the Applesoft NOTRACE statement at
OxF26F follows TRACE processing. TRACE sets the C-flag and NOTRACE clears the C-flag so that the C-
flag can be used to set or clear the MSB of the TRACEFLG flag.

52

Applesoft utilizes three statements in order to control how ASCII characters are displayed as they are
written to the TEXT screen. The ROM Monitor INVFLG flag controls the MSB, or bit-7 of the ASCII
character and the Applesoft FLASHBYT variable controls bit-6 of the ASCII character. The proper setting
of these two variables, INVFLG and FLASHBYT, is handled by the Applesoft NORMAL statement at @xF273
to set bit-7 of INVFLG flag and to clear bit-6 of FLASHBYT. The Applesoft INVERSE statement at @xF277
clears bit-7 of INVFLG flag and clears bit-6 of FLASHBYT. The Applesoft FLASH statement at OxF280
clears bit-7 of INVFLG flag and sets bit-6 of FLASHBYT. The value in FLASHBYT is OR’d with all ASCII
characters in the OUTCHR routine and the value in INVFLG flag is AND’d with all ASCII characters by the
COUT routine that is utilized in the OUTCHR routine.

The Applesoft HIMEM statement at @xF286 follows FLASH processing. HIMEM evaluates its input
expression and converts that value into a 16-bit integer that is saved to LINNUM. LINNUM is compared to
STREND in order to verify that the new HIMEM address is above all current variables and arrays, otherwise
Applesoft issues the Out of Memory error message. The new HIMEM address is saved to MEMSIZE and
FRETOP. The HIMEM routine is another example where it is possible to accelerate the processing by pulling
the error message jump out of the routine. Instead of branching around the error message jump, I reversed
the branch logic in order to branch to the error message jump only if there exists an error. Perhaps it is a
matter of programming style as some might proclaim. I perceive it as the rational option and I let faster
throughput code assist and guide my programming style. The Applesoft LOMEM statement at @xF2A6
follows HIMEM processing. LOMEM evaluates its input expression and converts that value into a 16-bit integer
that is saved to LINNUM. LINNUM is compared to MEMSIZE, and if LINNUM is greater, Applesoft issues the
Out of Memory error message. LINNUM is then compared to VARTAB, and if LINNUM is smaller, Applesoft
issues the Out of Memory error message. Otherwise, LINNUM is saved to VARTAB and LOMEM processing
jumps to CLEARC in order to initialize ARYTAB, STREND, and the STACK pointer for this new environment.

The Applesoft ONERR statement at @xF2CB follows LOMEM processing. ONERR processing verifies that this
Applesoft statement is followed by the Applesoft GOTO statement in order for ONERR processing to continue.
The current TXTPTR value is saved, the ERRFLG is enabled, and the current CURLIN value is saved. All
Applesoft statements and commands that are on the same program line and precede the Applesoft ONERR
GOTO statements are processed normally. And, whether the DATSCAN routine is called or not, all Applesoft
statements and commands that are on the same program line and come after the Applesoft ONERR GOTO
statements are not processed, that is, they are fully ignored and discarded. ONERR processing jumps to
DATAZ in order to continue Applesoft program processing. The Applesoft HANDLERR routine at @xF2E9
follows ONERR processing. HANDLERR is called by PRTERR, ASROMERR, or RESPERR whenever the ERRFLG
has been enabled. ONERR processing is another example where the ERRFLG is enabled. The RESTART or
ASTROMRM routine is one example where the ERRFLG is disabled. The HANDLERR routine saves the REMSTK
value, the CURLIN value, and the TEXTPTR value, and restores the saved TXTPTRSV value to TXTPTR and
the saved CURLINSV value to CURLIN. The routine then enters the line number that was provided with the
Applesoft ONERR GOTO statement and initiates normal Applesoft processing by means of the NEWSTT
routine. The Applesoft RESUME statement at @xF318 follows the HANDLERR routine. RESUME processing
restores the saved ERRLIN value to CURLIN, the saved ERRPOS value to TXTPTR, and the saved ERRSTK
value to the STACK pointer essentially restoring the line number and the text pointer to the very same line
where Applesoft previously detected an error. Once the Applesoft error is corrected by the statements that
reside on the ONERR GOTO program line number, the RESUME statement can be issue in order to retry the
offending Applesoft program line number. The Applesoft manual on page 82 suggests utilizing a very
short routine that will execute at any address and will augment an error-handling routine. This routine is
exactly what the RESUME statement accomplishes once the software problem is managed. For example, an
ONERR GOTO can be setup to protect a DOS CATALOG command for various volume numbers. Making

53

volume number a variable that can be managed by Applesoft would certainly allow an Applesoft RESUME
statement to repeat the DOS CATALOG command until a valid volume number is utilized that does not cause
a DOS error in an Applesoft program.

The Applesoft DEL statement at @xF331 follows RESUME processing. This statement deletes an Applesoft
program line number or a range of Applesoft program line numbers in both the immediate-execution mode
and in the deferred-execution mode. However, if the DEL statement is utilized in the deferred-execution
mode, the Applesoft program line number or line numbers would be deleted certainly, but the Applesoft
program would halt in its execution. There is no workaround such as using the Applesoft CONT statement
in order to resume Applesoft processing at the next available statement because that capability was simply
not incorporated into the design of DEL or CONT processing. DEL processing expects to evaluate at least one
numerical value, otherwise Applesoft issues a Syntax error message. DEL processing removes that specific
program line number if it exists, otherwise Applesoft issues a Syntax error message. However, if DEL
processing evaluates a second numerical value that is separated from the first numerical value by a comma,
a range of program line numbers is removed from an Applesoft program. This range of program line
numbers would be from the first numerical value or greater to the second numerical value or lesser. DEL
processing tolerates some ignoramus entries such as line @, negative line numbers, or a range of program
line numbers from a larger number to a smaller number. Once DEL processing has removed the target
program line numbers, the processing jumps to the beginning of the Applesoft interpreter at ASENTER or
ASROMRST. DEL processing was simply not designed to resume Applesoft processing at any particular line
number that might be just prior to or just after the deleted range of line numbers. I accelerated DEL
processing slightly by moving an RTS instruction from @xF364 and I redirected the branch instruction to an
RTS instruction at @xF38F which is at the end of the routine. Actually, any RTS instruction in the vicinity
would have sufficed only if doing so provided other advantages. The Applesoft GR statement at @xF390
follows DEL processing. GR processing establishes LORES graphics by disabling HIRES graphics, it enables
TEXT and mixed graphics, and it utilizes the SETGR routine at @xFB40 in the ROM Monitor. The SETGR
routine disables TEXT and it reiterates enabling TEXT and mixed graphics, it clears the top 4@ LORES graphic
lines, and it sets WNDTOP to 20 so that only four TEXT lines are displayed at the bottom of the screen. I
accelerated GR processing in the modified Applesoft by eliminating the duplicate TEXT and mixed graphics
switch that is already found in SETGR processing. The Applesoft TEXT statement at @xF399 follows GR
processing. I modified the TEXT processing to simply jump to the INITZ2 routine at @xFB33 rather than to
SETEXT routine at @xFB39 in the ROM Monitor. The INITZ2 routine disables HIRES graphics, enables
PAGE1, enables TEXT, and sets WNDTOP to @ so that all 24 TEXT lines are displayed on the screen.

I have removed the Applesoft STORE statement at @xF39F and the Applesoft RECALL statements at @xF3BC
in the modified Applesoft since these routines depend on reading and writing data to and from the cassette
ports that are no longer useful to the Apple][user. More specifically, I have also removed the routines that
the STORE and the RECALL statements depend on such as the TAPEPNT routine at @xF7BC and the GETARYPT
routine at @xF7D9. However, after I discovered the brilliant software of Egan Ford, I reinstalled the
Applesoft RDBYTE routine, the Applesoft LOAD statement, the Applesoft RDZBIT routine, and the Applesoft
CXREAD routine in order to support reading his Insta-Disk disk images. The RDBYTE routine, the Applesoft
LOAD statement, and the RDZBIT routine have already been described. I placed the CXREAD routine,
originally found at @xC5D1 in the Apple //e CXROM, at @xF39C and I reinstalled the cassette READ routine in
the ROM Monitor at its traditional location of @xFEFD. I continue to have no further use for the cassette
WRITE routine in the ROM Monitor at its former location of @xFECD, and that location is currently unused
and it contains an RTS instruction. The CXREAD routine reads an audio waveform using the RDZBIT routine
and its subroutine RDBIT as well as the RDBYTE routine. An audio waveform is comprised of a HEADER, a
SYNC, and its DATA as 8-bit bytes. The CXREAD routine contains the timing information for the various
waveforms that are utilized in order to differentiate the HEADER, the SYNC, and the DATA fields. The CXREAD
54

routine may be utilized to LOAD a single Applesoft file into memory or to READ a complete disk image onto
an initialized diskette. I have only slightly modified the original CXREAD routine by incorporating a 16
millisecond delay and CHKSUM initialization before the traditional Wozniak routine begins. The usual
procedure is to begin playing the AIFF Insta-Disk recording and then issuing the Applesoft LOAD statement
on the Apple Command Line. The binary DATA is saved to memory using the address in Al until Al reaches
the address in A2. Other routines from the collection of Insta-Disk software drivers perform nearly the
same function as CXREAD using specific timing information for Insta-Disk data waveforms that can read
random data up to 8 KHz or even 9.6 KHz. The CXREAD routine is designed to read a data waveform that
contains random data having an equal number of zero bits and one bits at 1333 Hz. It is truly amazing
what the Apple][computer is able to accomplish when it is placed into capable hands.

The Applesoft HGRZ statement at @xF3D8 and the Applesoft HGR statement at @xF3EZ2 both follow the
CXREAD routine. Even though it is totally unnecessary for me to modify the software of these two
statements, I found that I am able to process these two statements faster while adding a more elegant
transition from the TEXT display to the respective HIRES graphics display after the screen is cleared. In
other words, my graphic routines clear the respective HIRES graphics display before I address any soft
switches. The viewer is not shown the HIRES graphics display as its memory pages are being cleared as
the display is shown in the unmodified Applesoft. Rather, the viewer is shown the HIRES graphics display
after its memory pages are fully cleared. To me, this makes a distinct impression when viewing the
transition from TEXT display to HIRES graphics display. The Applesoft CLRHIRES routine at @xF3EC
follows HGR processing. Once CLRHIRES has initialized the target memory pages with a value of zero, it
enables the HIRES graphics display and it disables the TEXT display. The specific graphic initialization
routine enables PAGEZ and disables MIXED graphics for HGRZ processing and it enables PAGE1 and enables
MIXED graphics for HGR processing. I designed CLRHIRES in such a way that I have also provided an
additional entry point at @xF3EE called SETHIRES. In order for a user to utilize the Applesoft SETHIRES
routine, the A-register must contain the target HIRES graphics display value which is either @x20@ for
PAGE1 or @x40 for PAGE2 and the X-register must contain the value that will be used to initialize the
target memory pages. The SETHIRES routine utilizes the COLSHIFT routine in order to invert the memory
initialization value for all odd memory locations so that color is displayed homogeneously. It is left to the
user to enable the appropriate soft switch for PAGEL or for PAGEZ2 after SETHIRES returns to the user.

The Applesoft HPOSN routine at @xF411 follows SETHIRES processing. HPOSN is used by HRPLOT and by
DRAWCMD in order to establish the HIRES cursor position on the graphics screen. This HIRES cursor position
requires a 16-bit integer value for the horizontal coordinate and an 8-bit integer value for the vertical
coordinate. The established Applesoft protocol requires the horizontal coordinate to use the X-register
for the horizontal LSB coordinate value, the Y-register for the horizontal MSB coordinate value, and the
A-register for the vertical coordinate value. A series of highly complex, seemingly bizarre page-zero
mathematical calculations are employed in order to set GBAS, a 16-bit page-zero address, with the address
of the vertical scan line and the Y-register with the horizontal byte number for the HIRES cursor. The
value in the Y-register is saved to HRHORZ, and when shifted, determines if COLSHIFT is required to
invert COLBITS which contains the value from HRCOLOR. After the value in the Y-register is calculated,
that is, until the C-flag is clear, the value that remains in the A-register ranges from @xF9 to @xFF. That
negative value is used as an index into BITABLE, an array of seven values. The selected array value is saved
to COLOR and that value is used as a mask to operate specifically on the target color pixel that is within the
selected horizontal byte which is pointed to by the Y-register on the selected vertical scan line whose
address resides in GBAS.

55

F411 10 ; C--A-reg-- -GBASL-- -GBASH--
F411 86 EOQ 11 HPOSN stx HRXCOOR

F413 84 E1 12 sty HRXCOOR+1

F415 85 E2 13 sta HRYCOOR s =—ABCDEFGH -------- —=-—=-——-
F417 14 ;

F417 48 15 pha s =—ABCDEFGH -------= —=-—=-——-
F418 16 ;

F418 29 (O 17 and #$C0 ; --ABQQQOOQ -------- -—-—-—--
F41A 85 26 18 sta GBASL : --ABO0O0OOO ABOQOOOQ --------
F41C 19 ;

FA1C 4A 20 1sr : 0-0ABO00OO ABOQOOOD --------
F41D 4A 21 1sr : 0-00ABO0OOO ABOQOOOQ --------
FA1E 22 ;

FA1E 05 26 23 ora GBASL : 0-ABABOOOO ABOQOQOQ --------
F420 85 26 24 sta GBASL : 0-ABABOOQO ABABOQOQ --------
F422 25 ;

F422 68 26 pla : @-ABCDEFGH ABABOQQQ --------
F423 85 27 27 sta GBASH : ©-ABCDEFGH ABABQ@Q® ABCDEFGH
F425 28 ;

F425 QA 29 asl : A-BCDEFGHO ABABQQQ® ABCDEFGH
F426 OA 30 asl : B-CDEFGHO® ABABQQQ® ABCDEFGH
F427 31 ;

F427 OA 32 asl : C-DEFGHOQ@ ABABQOO® ABCDEFGH
F428 26 27 33 rol GBASH : A-DEFGHOQ@ ABABQOQ® BCDEFGHC
F42A 34

F42A QA 35 asl ; D-EFGHOQ00® ABABOQOQ® BCDEFGHC
F42B 26 27 36 rol GBASH . B-EFGHO00® ABABQOQ® CDEFGHCD
F42D 37 ;

F42D QA 38 asl : E-FGHO000® ABABOQO® CDEFGHCD
FA2E 66 26 39 ror GBASL : 0-FGHO000® EABABOO® CDEFGHCD
F430 40 ;

F430 A5 27 41 1da GBASH : @-CDEFGHCD EABAB@Q® CDEFGHCD
F432 29 1F 42 and #$1F . 0-Q0OFGHCD EABABOQ® CDEFGHCD
F434 43 ;

F434 05 E6 44 ora HRPAG : 0-PPPFGHCD EABABOQ® CDEFGHCD
F436 85 27 45 sta GBASH : ©-PPPFGHCD EABABOQ® PPPFGHCD

Figure 2. Vertical Coordinate Conversion to GBAS

Figure 2 displays the processing in HPOSN and how the address in GBAS is calculated from the vertical
coordinate. I have always wondered, if Wozniak had utilized a couple more logic chips, could he have
reduced the complexity of mapping the HIRES display location to memory location? If he were to achieve
that capability, would that have actually altered the HIRES animation routines that I incorporated in my
software development for Sierra On-Line? My animation routines calculated GBAS by utilizing lookup
tables that mapped vertical scan line directly to memory address. One cannot achieve a faster calculation
than using a lookup table. Therefore, however Wozniak mapped the HIRES display location to memory
address using hardware does not really matter when drawing or animating objects on the HIRES graphics

56

display. One is always bound to use the fastest method possible when critical timing loops are totally
dependent on how fast one can map a specific display pixel to a specific bit in a specific byte that is within
the memory range of a HIRES graphics display in the Apple][computer. I continue to be amazed at
Wozniak’s innovations.

The Applesoft HRPLOT routine at @xF457 follows HPOSN processing and this routine must be utilized with
all microprocessor registers configured in order to call the Applesoft HPOSN routine. Having the Y-
register and GBAS configured accordingly allows this routine to extract the target HIRES byte, mask out
all of its bits that conform to the color byte in COLBITS, and then mask the specific target pixel or HIRES
bit using the value in COLOR in order to turn that target pixel ON or OFF. That final pixel state is saved back
to the screen within the target HIRES byte. This is the general procedure that is also used by the Applesoft
DRAWIT routine. The Applesoft XDRAWIT routine modifies this general procedure slightly in order to
achieve the ability to reverse engineer the previous HIRES drawing. The Applesoft HRMOVLF routine at
0OxF465 follows HRPLOT processing. This routine is one of four routines that is used to modify the Y-
register and/or the address in GBAS in order to change the HIRES cursor position in one of four directions.
The HRMOVLF routine essentially moves the HIRES cursor position to the left by decrementing the Y-
register and updating HRHORZ with its new value if necessary, or it updates the value in COLOR by moving
the bit mask appropriately to the right, and it updates the color byte value in COLBITS simply by falling
into the Applesoft COLSHIFT routine that was previously used by SETHIRES and HPOSN. Perhaps this is
the best time to explain how the Apple][hardware draws pixels from the data it finds in memory. The
Apple][hardware reads a byte of data from HIRES memory whose address is based on the hardware address
mapper logic and that data is clocked into a shift register. If the MSB of that data byte is set, the output of
that shift register is delayed by one period of the 14 MHz clock. This delay introduces a shift to the phase
angle relative to color burst which changes the perceived color. The shift register is always shifted to the
right such that the LSB is the first data bit to be drawn as a pixel. Ifthat data bit is ON, that pixel is displayed
ON and the data byte is shifted to the right six more times. The last data bit to be displayed in that data byte
is bit six. The address mapper increments and the next data byte is displayed. As soon as the Y-register
becomes negative, the register is initialized with the value of 39 and COLOR is initialized with the value of
0xCO in order to mask bit six, the left-most pixel. The Applesoft COLSHIFT routine at @xF47E follows
HRMOVLF processing. COLSHIFT simply inverts the value in COLBITS if that value is greater than @x1F and
less than @xE@, otherwise COLSHIFT does not modify the value in COLBITS. The Applesoft HRMOVRT
routine at @xF484 follows COLSHIFT processing. HRMOVRT moves the HIRES cursor position to the right
by incrementing the Y-register and updating HRHORZ with its new value if necessary, or it updates the
value in COLOR by moving the bit mask appropriately to the left, and it updates the color byte value in
COLBITS. As soon as the Y-register becomes equal to 40, the register is initialized with the value of @
and COLOR is initialized with the value of @x81 in order to mask bit zero, the right-most pixel. In summary,
HRMOVRT shifts the value in COLOR to the left in order to move the pixel cursor position to the right and
HRMOVLF shifts the value in COLOR to the right in order to move the pixel cursor position to the left.

It amazes me how little testing Randy Wigginton and Cliff Huston must have done when they designed
their XDRAWIT routine and limited this routine to drawing a SHAPE definition that is only white in color no
matter what setting is used for HCOLOR= and without regard to the background color. How impressive is
that? Without knowing any more of the history of the development of the Applesoft interpreter when the
early Apple][computer was released for purchase, I can only surmise that time was of the essence in order
to produce a product quickly and without much regard to whether the best choices were made in the design
of many of the HIRES routines. Clearly, the DRAW and the XDRAW functions are not thoroughly well designed.
When I began my development of SHAPE Manager, 1 realized that the Applesoft XDRAW function provided
all of the HIRES drawing capabilities that I needed and were required by SHAPE Manager only after I made
substantial modifications to Applesoft. Initially, I was very confused as to what capabilities the DRAW

57

function provides and what capabilities the XDRAW function provides. The DRAW and XDRAW functions have
no relationship or interdependencies, and these two Applesoft functions are not designed to be used in
conjunction with the other. The DRAW function is designed to manipulate the pixels on the HIRES screen in
order to place a SHAPE definition which is drawn from a SHAPE table over or on top of whatever HIRES
pixels are currently being displayed. There is no mechanism to programmatically remove this SHAPE
definition except by drawing another SHAPE definition over the same HIRES pixels that are currently being
displayed. The DRAW function does not incorporate any of the old HIRES pixel information with any of the
pixel information in the new SHAPE definition. The DRAW function draws colors to the HIRES screen such
that the data that is drawn replaces whatever data may previously exist on the HIRES screen. The XDRAW
function incorporates the old HIRES pixel information with the new SHAPE definition pixel data such that
the new SHAPE definition can be easily removed and the old HIRES pixel information can be restored as it
was previously simply by performing another XDRAW with the same SHAPE definition at the same screen
location. As with all graphic routines that make use of the exclusive-OR microprocessor instruction, color
complements must be taken into consideration when using the XDRAW function. The XDRAW function draws
colors to the HIRES screen such that the data that is drawn becomes the complement of whatever data may
previously exist on the HIRES screen. The main purpose in using the XDRAW function is to provide a simple
way to erase a shape and to easily redraw that same shape or another shape at the same HIRES screen
location or at another HIRES screen location without erasing the background data. The DRAW function is far
more straightforward to use in many respects. However, shapes that are drawn by the DRAW function cannot
easily be programmatically removed from the HIRES screen as easily as those shapes that are drawn by the
XDRAW function. All HIRES animation uses XDRAW inspired routines. Both DRAW and XDRAW functions may
be used from the Apple Command Line or from within an Applesoft program.

I have heavily modified the draw shape routines such that the new Applesoft DRAWHDR routine at @xF49C
follows HRMOVRT processing and DRAWHDR prefaces the modified Applesoft XDRAWIT and DRAWIT routines.
DRAWHDR processes common code from the beginning of the original XDRAW and DRAW routines at @xF49C
and @xF4B3, respectively, in the unmodified Applesoft. In the modified Applesoft, DRAWHDR processes
new instructions then enter either the XDRAWIT routine or the DRAWIT routine. The Applesoft XDRAWIT
routine at @xF4A6 follows DRAWHDR processing. XDRAWIT utilizes COLBITS in order to support color which
the original XDRAW routine failed to do. If another object exists at this screen location, XDRAWIT branches
to increment a common collision counter HRCOLCNT, otherwise XDRAWIT branches to the common
XDRAW/DRAW routine. The Applesoft DRAWIT routine at @xF4B8 follows XDRAWIT processing. DRAWIT is
based on the original DRAW routine and if there exists another object at this screen location, DRAWIT falls
into the collision counter HRCOLCNT before entering the common XDRAW/DRAW routine at @xF4C2. Once the
common XDRAW/DRAW routine displays the intended pixel, the common SHAPE processing begins where the
C-flag is clear during horizontal processing or the C-flag is set during vertical processing. In other
words, every SHAPE command is processed once for its horizontal information and once for its vertical
information. If the resulting rotation to the SHAPE results in the C-flag being set, a branch is made to
HRMOVLF as previously discussed. Otherwise, SHAPE rotation logic enters the Applesoft HRMOVUP routine
at @xF4D1. If the value in the A-register is negative, a branch is made to the Applesoft HRMOVDN routine
at OxF501. These are the last two routines of four that are used to modify the Y-register and/or the
address in GBAS in order to change the HIRES cursor position in one of four directions. HRMOVUP modifies
GBAS in order to move up one scan line or to move to the very last scan line whose address is HRPAG plus
Ox1FD@. I removed the unnecessary clc instruction from the top of this routine. The Y-register, the
COLOR variable, and COLBITS variable are never modified. HRMOVDN also modifies GBAS in order to move
down one scan line or to move to the very first scan line whose address is found in HRPAG. I removed the
unnecessary clc instruction from the top of this routine and I added a true termination at the end of this
routine in order to accelerate processing. Once again, the Y-register, the COLOR variable, and the

58

COLBITS variable are never modified. The BITBYT table values that are utilized by HRMOVUP and HRMOVDN
at OxF52D follow HRMOVDN processing. And, the BITABLE table at @xF530 follows the BITBYT values.
Again, the BITABLE is utilized by the Applesoft HPOSN routine in order to initialize the COLOR variable.

The Applesoft HLIN routine at @xF53A follows the BITABLE table values. HLIN is only used by HPLOT and
it would have been far more practical to include HLIN inline within HPLOT and four bytes would have been
saved. However, HLIN can be utilized by an external user to Applesoft in order to draw one HIRES line.
As documented in the DOS 4.5 Volume and File Disk Management System Second Edition, HLIN is
hopelessly flawed. I have always disliked the unsymmetrical look of a HIRES diagonal line when it is
drawn either in the horizontal or in the vertical direction ever since I acquired my Apple][+. And this same
HLIN routine persists in the Applesoft of the Apple //e unchanged, which is shameful in my opinion. After
I analyzed HLIN, I found that the routine does not correctly calculate the delta difference of the horizontal
and of the vertical start to end points before drawing the requested line. It is easy to demonstrate this error
before and after installing the modified Applesoft or by using an assembly language routine that contains
the HLIN routine with and without the necessary modifications. There are two memory locations that
require a small code adjustment. The first code adjustment is made at @xF57A and the second code
adjustment is made at @xF5A5. You will simply be amazed at how lovely and symmetrical diagonal lines
are drawn either from left to right, from right to left, from top to bottom, or from bottom to top. I am
literally appalled that the original Applesoft passed any sort of testing and/or code review vis-a-vis how
trivial these two modification are and how elegant the results appear to be. The established Applesoft
protocol for HLIN requires the horizontal coordinate to use the A-register for the horizontal LSB end
coordinate value, the X-register for the horizontal MSB end coordinate value, and the Y-register for
the vertical end coordinate value. This protocol is different from the protocol that is used for HPOSN which
establishes the start coordinates. I used the rts instruction at @xF52C for the branch instruction at @xF59C
and I replaced the bvc instruction at @xF5B@ with a jmp instruction because I have the Applesoft space.

HLIN always draws a HIRES line from the start coordinates that are established by HPOSN or from the end
coordinates of a previous call to HLIN to the end coordinates of the current call to HLIN. HLIN utilizes the
four routines that are used to modify the Y-register and/or the address in GBAS in order to change the
HIRES cursor position in one of four directions: HRMOVLF to move left, HRMOVRT to move right, HRMOVUP
to move up, and HRMOVDN to move down. The preprocessing that HLIN performs initially is to establish the
flag value for @xD3 where bit six determines whether HRMOVLF or HRMOVRT is utilized and bit seven
determines whether HRMOVUP or HRMOVDN is utilized. The four possible values that are found at @xD3 are
0x00, Ox7F, 0x80, and OxFF. HLIN preprocessing also calculates the horizontal and the vertical deltas
between the start and the end coordinates and it sums those deltas in order to create the total number of
iterations that are required to draw a particular HIRES line. For example, it requires 472 iterations to draw
a HIRES line from coordinate 0,0 to coordinate 279,191, that is, 280 + 192 = 472. By means of the
continual subtraction of the vertical delta from the horizontal delta, HLIN transitions from horizontal
processing to vertical processing. HLIN utilizes the identical set of HIRES drawing instructions that are
found in DRAWIT. Thus, a HIRES line that is drawn by HLIN does not incorporate any of the current HIRES
pixel information with any of the pixel information that is part of the new HIRES line. HLIN draws a colored
line to the HIRES screen such that the data that is drawn replaces whatever data may previously exist on the
HIRES screen. Other than the two modifications that I made to HLIN in order to correct its flawed logic,
the HLIN routine is a well-conceived routine that performs its task as efficiently as possible.

The Applesoft ROTATBL table at @xF5B3 follows HLIN processing and the values that comprise this table

are used to rotate a SHAPE in steps of 5.625 degrees in any single quadrant. ROTATBL provides seventeen

entries where the first sixteen cosine entries are used to initialize the horizontal ROTHVAL variable and the

last sixteen sine entries are used to initialize the vertical ROTVVAL variable. In other words, fifteen of the
59

ROTATBL values are shared by the ROTHVAL and ROTVVAL variables. The values that are contained in
ROTATBL are calculated as cosine products using the expression COSC 90 * X/16) * 0x100. The
unmodified Applesoft uses a multiplication factor of @xFF rather than 0x100 as in the modified Applesoft.
This multiplication factor is quite critical because the horizontal and the vertical summation registers are
based on setting the C-flag when their sum exceeds 0x100 and NOT @xFF. The 6502 and the 65C02
microprocessor instruction set does not provide any branch instructions that are based on exceeding the
value of OxFF. Yet, the unmodified version of Applesoft persists in using this logic to its detriment when
it calculates the values for ROTATBL. The value of @x@0@ should be utilized for no rotation rather than @xFF.
This seemingly small difference of opinion will be highlighted very soon in this discussion.

The Applesoft DRAWCMD routine at @xF5C7 follows the ROTATBL table and this routine is utilized specifically
by the Applesoft DRAW statement and by the Applesoft XDRAW statement. The DRAWCMD routine in the
modified Applesoft is based on a unique design that combines the Applesoft DRWPNT routine and the
common components of the XDRAW1 and the DRAW1 routines which become the DRAWSHP routine that is
only found in the unmodified Applesoft. The XDRAW1 and the DRAW1 routines are nearly identical except
for their unique pixel processing instructions which I have extracted into the XDRAWIT and the DRAWIT units
of DRAWHDR that are only found in the modified Applesoft. DRAWHDR utilizes a unique flag in OPRND that is
used to select either XDRAWIT or DRAWIT, and this flag is initialized to one value by the Applesoft XDRAW
statement or to another value by the Applesoft DRAW statement. Not only have I extracted a sizeable amount
of common code from the unmodified Applesoft, but I have also accelerated the drawing of a SHAPE
definition. The first part of DRAWCMD, that is, the DRWPNT routine that is in the unmodified Applesoft,
evaluates the expression of either the XDRAW or the DRAW statements for the requested SHAPE definition that
is contained in the given SHAPE table. The user must have already initialized the HRSHPTBL variable with
the 16-bit address of the SHAPE table that must already reside in memory. The DOS 4.5.08H SHLOAD
command performs the initialization of the HRSHPTBL variable automatically as well as initializing FRETOP
and HIMEM in order to protect the SHAPE table usually from the Character String Pool. If the user selects a
valid SHAPE definition, DRAWCMD locates the data for that selected SHAPE definition and initializes the SHAPE
variable with the address that points to the data of that selected SHAPE definition. DRAWCMD further evaluates
the given expression for the Applesoft AT statement if it should exist. If the AT statement does exist in the
expression, DRAWCMD uses the Applesoft GETFNS routine in order to extract and range check the horizontal
and the vertical coordinates in where to draw the first pixel of the requested SHAPE definition on the HIRES
screen. With all three microprocessor registers initialized with the values of the horizontal and the vertical
coordinates, DRAWCMD calls HPOSN in order to calculate the 16-bit scan line address for GBAS and the
horizontal byte number for the Y-register. If the AT statement is not found in the given expression, the
requested SHAPE definition is drawn starting at the last pixel drawn by the most recently executed HPLOT,
XDRAW, or DRAW statement. Applesoft is certainly not designed to verify the validity of the current values
that reside in the HRXCOOR or the HRYCOOR variables, so if these variables contain erroncous values, the
requested SHAPE definition might be drawn outside of the selected HIRES screen which could potentially
destroy the contents of memory throughout the Apple][computer. At this point in the processing of the
equivalent DRWPNT routine, processing would have completed and would have returned to its caller.
However, in the modified Applesoft, DRAWCMD now begins the common processing that is found in the
XDRAW1 and in the DRAW1 routines, that is, the DRAWSHP routine that is found in the unmodified Applesoft.

Applesoft is capable of rotating a SHAPE definition in all four quadrants, so the rotation value that is found

in HRROT has a range of @0:63. Each quadrant contains sixteen possible rotations with some constraints

imposed by the scale value that is found in HRSCALE. At @xF6080, the value in HRROT is divided by sixteen

and the target quadrant number is saved to ROTQVAL. The masked value of HRROT is used to select the

requested quadrant rotational value from ROTATBL for the horizontal component that is saved to ROTHVAL

and for the vertical component that is saved to ROTVVAL. The Y-register is restored from HRHORZ and
60

the collision counter HRCOLCNT is initialized to @. At this point in DRAWSHP processing, the modified
Applesoft DRAWCMD makes a dramatic diversion in order to implement the design of a far superior SHAPE
drawing algorithm. In the unmodified Applesoft, the fractional vectors ROTHSUM and ROTVSUM are both
initialized with @x8@ whenever a SHAPE vector is obtained from a new value that is read from the SHAPE
table or from a value that is shifted from the current SHAPE table value. These two fractional vectors
determine when it is time to draw a horizontal or cosine pixel and when to draw a vertical or sine pixel.
Whenever their value overflows 0x100 by successively adding the ROTHVAL value to ROTHSUM and adding
the ROTVVAL value to ROTVSUM, the C-flag becomes set and a new pixel is drawn. This algorithm yields
the example SHAPE definition that is shown in Figure 3 using all sixty-four values in HRROT having a scale
value of eleven in HRSCALE. Figure 3 easily shows the visual distortions, the angle irregularities, and the
unequal length of all lines other than at the precise horizontal and vertical axes. The DRAWSHP routine that
is used in the unmodified Applesoft is simply wrong, unacceptable, and rather useless.

Figure 3. Unmodified Applesoft DRAWCMD Figure 4. Modified Applesoft DRAWCMD

The SHAPE drawing algorithm in the modified Applesoft that is found in DRAWCMD begins by initializing a
new page-zero variable called SHPOLD with the value of @xFF before the collision counter HRCOLCNT is
initialized to @. As long as the next SHAPE vector, either from a new value that is read from the SHAPE table
or a value that is shifted from a current SHAPE table value, does not change, ROTHSUM and ROTVSUM are not
reinitialized. When SHPOLD is not equal to the current SHAPE vector as in the initial state of @xFF, the
current SHAPE vector is saved to SHPOLD and ROTHSUM and ROTVSUM are initialized to @x@0@ and not to
0x80. The X-register is initialized with the value in HRSCALE and the remaining scale-loop processing
in DRAWCMD is the essentially the same as in DRAWSHP where DRAWHDR is called with the C-flag clear
whenever a horizontal pixel is drawn and DRAWHDR is called with the C-flag set whenever a vertical pixel
is drawn. The state of the C-flag prior to calling DRAWHDR is used in the summation of SHPVAL and
ROTQVAL in order to determine the next pixel cursor move direction that will either modify GBAS and/or
modify the Y-register. I find it truly amazing that with all of the processing that occurs in DRAWHDR that
the state of the C-flag is maintained until much later when the summation of SHPVAL and ROTQVAL occurs.
The results of this far superior SHAPE drawing algorithm is shown in Figure 4. Figure 4 shows that there
are no longer any visual distortions, all angles are regular and equal, and the lengths of all sixty-four lines
or spokes are equal to the precise horizontal and vertical axes. Can this SHAPE display get any better? NO!
This SHAPE display is the best possible display that can be obtained from any SHAPE drawing algorithm.

61

What is most remarkable about this unique algorithm is that it only costs eight extra bytes of code and a
single page-zero variable. Furthermore, this algorithm confirms that initializing ROTHSUM and ROTVSUM
with 0x80 is not correct and that the calculation and utilization of the values in ROTATBL is not correct in
the unmodified Applesoft. DRAWCMD in the modified Applesoft is the correct algorithm.

A tremendous amount of Applesoft space is now available in the modified Applesoft after identifying the
common components of the XDRAW1 and the DRAW1 routines and removing their duplicate components.
After DRAWCMD processing, there is enough Applesoft space for the continuation of SQR at @xF666, for the
continuation of COPYAZF at @xF68E, for the continuation of COPYF2A at @xF693, and for the new Applesoft
COPYT32A routine at OxF6A8. COPYT32A first copies T3GUARD to ARGGUARD and then this routine initializes
the A-register and the Y-register with the address of the T3 floating-point register. COPYT32A uses
the LOADARG routine in order to copy the floating-point number from the T3 floating-point register into the
ARG floating-point register. There are five unused bytes at OxF6B4.

The Applesoft GETFNS routine at @xF6B9 follows COPYT32A processing and this routine is used by DRAWCMD
and by HPLOT. As previously detailed, GETFNS evaluates a statement expression and it extracts and range
checks the horizontal and the vertical coordinates in where to draw the first pixel of the requested SHAPE
definition or HLIN on the HIRES screen. With all three microprocessor registers initialized with the values
of the horizontal and the vertical coordinates, DRANCMD can call HPOSN directly or HPLOT can call HPOSN
indirectly by means of HRPLOT. The call to HPOSN uses the values that are found in all three microprocessor
registers in order to calculate the 16-bit scan line address for GBAS and the horizontal byte number for the
Y-register. GETFNS range checks the horizontal coordinate value to be less than 280 and the vertical
coordinate value to be less than 192. GETFNS also syntactically verifies that there exists a comma between
the two coordinate values. The Applesoft HCOLOR statement at @xF6E9 follows GETFNS processing.
HCOLOR evaluates the statement expression for its value, and that value is range checked and utilized as an
index into the HRCOLTBL table of color values. HCOLOR extracts the HRCOLTBL color value and it saves that
color value to HRCOLOR. The Applesoft HRCOLTBL table is at @xF6F6 and it follows HCOLOR processing.
The HRCOLTBL color value table is comprised of eight color values from two color groups. Earlier in this
discussion about the COLSHIFT routine, I pointed out that when the Apple][hardware reads a byte of data
from HIRES memory whose address is based on the hardware address mapper logic, that data is clocked
into a shift register. If the MSB of that data byte is set, the output of that shift register is delayed by one
period of the 14 MHz clock. This delay introduces a shift to the phase angle relative to color burst which
changes the perceived color. The two color groups that form the HRCOLTBL table of color values consists
of four values whose MSB is OFF and another set of identical values whose MSB is ON. The first color
group contains the color values for the colors BLACK1, GREEN, PURPLE, and WHITE1. The second color
group contains the color values for the colors BLACK2, ORANGE, BLUE, and WHITEZ. Of course, individual
television or monitor circuits may present the color of these color values somewhat differently or with a
different hue. The horizontal and the vertical timing circuits in the Apple][computer are close enough to
the older NTSC standard or to the more recent ATSC standard: the signals do not need to be that precise.

The Applesoft HPLOT statement at @xF6FE follows the HRCOLTBL color value table. HPLOT can be utilized
in three construction formats: 1) horizontal and vertical coordinates are specified, 2) the Applesoft TO
statement is followed by horizontal and vertical coordinates, 3) horizontal and vertical coordinates are
specified, the Applesoft TO statement is specified, then horizontal and vertical coordinates are specified. If
the first construction format is found, HPLOT calls HRPLOT to draw a single pixel on the appropriate HIRES
screen. The Applesoft TO statement followed by horizontal and vertical coordinates construction format
may be repeated any number of times until a TO statement is no longer found. Once HPLOT evaluates its
expression for the TO statement, the values for the coordinates are obtained by means of GETFNS. The
coordinate values are rearranged in the microprocessor registers so that they are made compatible to the

62

input requirements of HLIN. HLIN draws the requested line on the appropriate HIRES screen and the HPLOT
expression is further evaluated for another TO statement, otherwise HPLOT processing exits. Merely by
inspection, HLIN exits when its COLCOUNT variable becomes equal to zero at @xF59C since HLIN has no
other exit path. I find it interesting that the Applesoft developers did not utilize this fact about HLIN since
they used a very expensive jmp jump instruction at @xF71E rather than the valid beq branch instruction. It
just seems out of character from the Applesoft language developers who appeared to leverage off of every
possible nuance they programmed into their routines. There would be no point in modifying HPLOT since
another Applesoft statement follows HPLOT and whose entry address I wish to maintain. The Applesoft
ROT statement at @xF721 follows HPLOT processing. ROT evaluates its statement following an equal sign
for a rotational value which it stores in HRROT. ROT does not mask this value with @x3F or range check this
value to be less than 64. However, the HRROT value is indirectly masked when its upper nibble is utilized
in the summation of SHPVAL and ROTQVAL and clamped by a comparison. The Applesoft SCALE statement
at OxF727 follows ROT processing. SCALE evaluates its statement following an equal sign for a scale value
which it stores in HRSCALE. The value in HRSCALE can range from @:255 where a value of 0 is interpreted
to be 256. A value of 1 for HRSCALE would provide a point for point reproduction of a SHAPE definition.
Applesoft does not initialize the value in HRSCALE even in the Applesoft COLDSTRT routine. It is important
to remember to initialize the value in HRSCALE before using the Applesoft XDRAW or DRAW statements.
However, the modified Applesoft does initialize HRSCALE to 1 in COLDSTRT due to available space.

Another large amount of Applesoft space is now available in the modified Applesoft where the Applesoft
DRWPNT routine was placed at @xF72D. DRWPNT is incorporated into DRAWCMD in the modified Applesoft.
Since I have combined the common components of XDRAW1 and DRAW1 from the unmodified Applesoft and
incorporated those common components into DRAWCMD, I have removed the DRWPNT routine. The Applesoft
space at @xF72D in the modified Applesoft is now used for the continuation of the processing for RND. This
section of RND processing utilizes the Peasant algorithm in order to multiply ARGMANT and MULMANT and
save its 32-bit integer product into FACMANT and IRAND. However, this RND processing must straddle the
next two Applesoft statements so that the remaining RND processing at @xF775 can convert the 32-bit
integer currently in FACMANT into a floating-point fraction. That floating-point fraction is either returned
to the user without further modification or, if the user supplied a Range value, that floating-point fraction
is multiplied by the Range value that was saved in TEMP1. An Applesoft floating-point multiply routine
can now be used safely for the Range value multiplication. The product of the Range value multiplication
is converted into an integer and that integer is returned to the user either for possible plotting or for graphing.

The third to last and second to last Applesoft statements are the Applesoft DRAW statement at @xF769 and
the Applesoft XDRAW statement of @xF76F. These two statements reside at the very same memory location
as found in the unmodified Applesoft, and they follow DRWPNT processing in that version of Applesoft. I
developed a unique software design for these two statements in order to easily differentiate their utilization
by their common DRAWHDR routine. In the modified Applesoft, DRAWHDR incorporates some common
processing before choosing whether to enter the processing of XDRAWIT or to enter the processing of
DRAWIT. That choice or decision is entirely based on the value that DRAW saves into the OPRND variable flag
or the value that XDRAW saves into the OPRND variable flag. If the MSB of the OPRND flag is set, then
DRAWHDR continues its processing using XDRAWIT. If the MSB of the OPRND flag is clear, then DRAWHDR
continues its processing using DRAWIT. In other words, DRAW clears the MSB of the OPRND flag and XDRAW
sets the MSB of the OPRND flag. Both statements utilize DRAWCMD in order to begin drawing the selected
SHAPE definition on the selected HIRES display from the SHAPE table that is currently in memory.

The Applesoft interpreter in the modified Applesoft ends at @xF791 after seven bytes of unused space. I

have placed the ROM Monitor TITLE at @xF791 which is a unique ASCII string, and when this ASCII

string is displayed, the ROM Monitor TITLE Apple //e+ is shown centered at the top of the TEXT display.
63

How fun is that! A number of modifications were made to Applesoft that was installed in the Apple //e
computer when that computer was first introduced in the early 1980°s. These Applesoft modifications were
made in order to support an 8@ column TEXT display and to support lower case in Applesoft program entry
and utilization. The first three modification routines are at @xF79B, @xF7AQ@, and @xF7AE, and these
modification are used in the Applesoft PARSE routine that begins at @xD56C. Two more modification
routines are at @xF7BE and @xF7(C6, and these modifications are used in the Applesoft LIST statement that
begins at @xD6A5. The modification routine at @xF7C6 and another modification routine at @xF7D5 are
both used in the Applesoft PRINT statement that begins at @xDAD5. The final modification routine at
OxF7DC is loosely tied to the modification routine at @xF7D5 depending upon the setting of the MSB in the
RDVID8@ switch at @xCOL1F. This final modification is utilized by the very last Applesoft statement HTAB.
The Applesoft HTAB statement at @xF7E7 is the last and final Applesoft statement and this statement is
located, remarkably, at its traditional Applesoft location. However, its processing is somewhat modified
since HTAB now depends on the final modification routine at @xF7DC. This final modification maintains
the location of the horizontal TEXT cursor not only at CH, but also at OURCH for 8@ column display utilization.
It is rather interesting that some narcissistic individual placed their initials in the final three bytes of the
unmodified Applesoft that is found in the Apple][+, that is, the Applesoft that does not support 8@ column
display and lower case entry. Those three bytes, however, are utilized in the Apple //e Applesoft that does
support 8@ column display and lower case entry. Thank goodness a clever software engineer was able to
utilize just the right amount of available Applesoft space to transform the HTAB statement in order for HTAB
to support the utilization of the 8@ column display and to allow the entry of and the utilization of lower case
ASCII characters in the Apple //e computer.

Derived Transcendental Arithmetic Operations

The Basic Programming Reference Manual for Applesoft][on pages 103-104 lists all of the derived
transcendental arithmetic operations that can be calculated from the Applesoft intrinsic transcendental
arithmetic operations. These intrinsic transcendental arithmetic operations include, of course, the sine,
cosine, tangent, arctangent, logarithm, and the exponential operation. The arithmetic operations that
support the intrinsic transcendental arithmetic operations include subtraction, addition, multiplication,
division, and the square root function as well as the SGN function. These intrinsic Applesoft operations are
utilized in order to calculate all of the following derived transcendental arithmetic operations. These
Applesoft operations may also be implemented by using the Applesoft DEF FN statement pair.

The secant, denoted as sec, is a trigonometric function that is defined as the ratio of the length of the
hypotenuse to the length of the side that is adjacent to a given angle in a right triangle. The secant is also
the reciprocal of the cosine function as long as the cosine function is not zero. The sec is expressed
mathematically as

SEC(X) = 1/ COSCX)

The cosecant, denoted as csc, is a trigonometric function that is defined as the ratio of the length of the
hypotenuse to the length of the side that is opposite to a given angle in a right triangle. The cosecant is
also the reciprocal of the sine function as long as the sine function is not zero. The csc is expressed
mathematically as

64

CSCCX) = 1/ SINCXD

The cotangent, denoted as cot, is a trigonometric function that is defined as the ratio of the length of the
adjacent side to the length of the opposite side in a right triangle. It can also be expressed as the cosine
of an angle divided by the sine of that same angle as long as the sine function is not zero or as the
reciprocal of the tangent function as long as the tangent function is not zero. The cot is expressed
mathematically as

COT(X) = COSCX) / SINCX) = 1/ TANCXD

The inverse sine or arcsin, denoted as sin2, is the inverse function of the sine trigonometric function.
It is used to find the angle whose sine value is a given number. The arcsin is expressed mathematically
as

ARCSIN(X) = ATNCX/SQRC1-X*))

The inverse cosine or arccos, denoted as cos™, is the inverse function of the cosine trigonometric
function. It is used to find the angle whose cosine value is a given number. The arccos is expressed
mathematically as

ARCCOS(X) = -ATNCX/SQRC1-X?))+PI/2

The inverse secant or arcsec, denoted as sec™, is the inverse function of the secant trigonometric
function. It is used to find the angle whose secant value is a given number. The arcsec is expressed
mathematically as

ARCSEC(X) = ATNCSQRCX*-1))+(SGN(X)-1)*PI/2

The inverse cosecant or arccsc, denoted as csc™?, is the inverse function of the cosecant trigonometric
function. It is used to find the angle whose cosecant value is a given number. The arccsc is expressed
mathematically as

ARCSEC(X) = ATNC1/SQRCX?-1))+(SGN(X)-1)*PI/2

The inverse cotangent or arccot, denoted as cot™l, is the inverse function of the cotangent
trigonometric function. It is used to find the angle whose cotangent value is a given number. The arccot
is expressed mathematically as

ARCCOT(X) = -ATN(X) +PI/2

65

The hyperbolic sine or sinh is the hyperbolic function of the sine trigonometric function and it is based
on hyperbolic geometry. Hyperbolic geometry is based on the hyperbola rather than the circle. The sinh
is expressed mathematically as

SINH(X) = CEXP(X) -EXP(-X)) /2

The hyperbolic cosine or cosh is the hyperbolic function of the cosine trigonometric function and it is
based on hyperbolic geometry. Hyperbolic geometry is based on the hyperbola rather than the circle. The
cosh is expressed mathematically as

COSH(X) = CEXP(X) +EXP(-X))/2

The hyperbolic tangent or tanh is the hyperbolic function of the tangent trigonometric function and it
is based on hyperbolic geometry. Hyperbolic geometry is based on the hyperbola rather than the circle.
The tanh is expressed mathematically as

TANH(X) = -EXP(-X))/ CEXP(X) +EXP(-XD)) *2+1

The hyperbolic secant or sech is the reciprocal of the hyperbolic cosine function and it is based on
hyperbolic geometry. Hyperbolic geometry is based on the hyperbola rather than the circle. The sech is
expressed mathematically as

SECH(X) = 2/ CEXP(X) + EXP(-X))

The hyperbolic cosecant or csch is the reciprocal of the hyperbolic sine function and it is based on
hyperbolic geometry. Hyperbolic geometry is based on the hyperbola rather than the circle. The csch is
expressed mathematically as

CSCH(X) = 2/ CEXP(CX) - EXP(-X) D

The hyperbolic cotangent or coth is the hyperbolic function of the cotangent trigonometric function
and it is based on hyperbolic geometry. Hyperbolic geometry is based on the hyperbola rather than the
circle. The coth is expressed mathematically as

TANH(X) = EXP(-X))/ CEXP(X) -EXP(-X)) *2+1

The inverse hyperbolic sine or arcsinh, denoted as sinh2, is the inverse function of the hyperbolic sine
trigonometric function. It is used to find the hyperbolic angle whose hyperbolic sine value is a given
number. The arcsinh is expressed mathematically as

ARCSINH(X) = LNCX+SQRCX*+1))

66

The inverse hyperbolic cosine or arccosh, denoted as cosh™, is the inverse function of the hyperbolic
cosine trigonometric function. It is used to find the hyperbolic angle whose hyperbolic cosine value is
a given number. The arccosh is expressed mathematically as

ARCCOSH(X) = LNCX+SQR(X*-1))

The inverse hyperbolic tangent or arctanh, denoted as tanh1, is the inverse function of the hyperbolic
tangent trigonometric function. It is used to find the hyperbolic angle whose hyperbolic tangent value
is a given number. The arctanh is expressed mathematically as

ARCTANH(X) = LNC(C1+X)/(C1-X))/2

The inverse hyperbolic secant or arcsech, denoted as sech™, is the inverse function of the hyperbolic
secant trigonometric function. It is used to find the hyperbolic angle whose hyperbolic secant value is
a given number. The arcsech is expressed mathematically as

ARCSECH(X) = LNCSQRC1-X)+1)/X

The inverse hyperbolic cosecant or arccsch, denoted as csch?, is the inverse function of the hyperbolic
cosecant trigonometric function. It is used to find the hyperbolic angle whose hyperbolic cosecant value
is a given number. The arccsch is expressed mathematically as

ARCCSCH(X) = LNCSGNCX) *SQRC1+X*)+1)/X

The inverse hyperbolic cotangent or arccoth, denoted as coth™, is the inverse function of the hyperbolic
cotangent trigonometric function. It is used to find the hyperbolic angle whose hyperbolic cotangent
value is a given number. The arccoth is expressed mathematically as

ARCCOTH(X) = LNC(X+1)/(X-1))/2

The expression A mod B refers to the modulo operation which calculates the remainder when A is divided
by B. This function could be incorporated into Applesoft as the Applesoft MOD statement. Perhaps the
unmodified Applesoft sine polynomials could be reinstalled into the modified Applesoft in order to provide
the Applesoft space that would be required to calculate this function. The modulo is expressed
mathematically as

MODCA) = INTCCA/B-INTCA/B))*B+0.5) * SGNCA/B)

67

Testing Applesoft Floating-Point Routines

The Call-A.P.P.L.E. magazine published the article Floating Point Arithmetic in Applesoft BASIC by James
W. Thomas in July, 1985, and this article appeared on pages 15 to 18. This article introduces the Standard
Apple Numerics Environment or SANE as a result of efforts from the Apple Numerics Group. SANE is
utilized in Apple Works, MacPascal, MacBASIC, the Lisa Workshop, and in several other Macintosh
languages and applications. However, the purpose of this article is to bring attention to the problems and
the issues that are found in Applesoft arithmetic which can be quantitatively identified. This article did not
mention nor did it infer whether or not any arithmetic that is found in Applesoft BASIC is utilized in the
development of SANE. That information would have been rather interesting to know. Returning to the
content of Mr. Thomas’s article, if I have been in anyway successful in eliminating any of the identified
problems in Applesoft arithmetic, the examples from this article should easily prove my success.

Integer numbers as large as 1,048,576 or 22 can be precisely expressed by an Applesoft floating-point
number. However, not all decimal numbers can be precisely expressed by this floating-point notation.
Applesoft floating-point notation is limited by its 8-bit exponent and its 32-bit mantissa, and Applesoft
notation cannot precisely express many decimal numbers. Even IEEE floating-point double precision
numbers cannot precisely express many decimal numbers. Mr. Thomas provides a very simple test to show
the weakness of all similar floating-point notations. I have magnified the range of this test in order to also
show the strengths that are inherent in Applesoft floating-point numbers as well.

18 HOME
28 FOR I = @ TO 1@
38 READ A
48 IF & = @ OR A > .95 THEM PRINT
o= g i@, . iTROTO B@
5@ PRINMT "g'="fig;h, 7,
EA GOSUE 2080: PRINT "B = ";EB
=) gugus 388:. PRINT " B =
g8 ME®T
98 EHD
2688 E = B
518 FOR J = 1 TO 1888:B = B + f: HEXT
228 RETURH
368 B = INT (B + B. 25>
318 FOR J = 1 TO 1BGB:BE = B - f: HEXT
328 RETURHM
igEee DaTe @, .1,.2,.3,.4,.5,.6,.7,
.8,.9,1
K

Figure 5. Test 1 Applesoft Program

The Applesoft program for Test 1 is shown in Figure 5. Eleven fractional values are tested using 1000
loops of successive addition and 1000 loops of successive subtraction using the DATA values that are shown
in line 1000. The first 1000 loops add the same value to a running sum and then the main routine prints
that final sum on line 6@. The next 1000 loops begin with an integer of that final sum and it subtracts that
same value and then the main routine prints the final value in line 7@. Both versions of Applesoft in an
Apple //e display nearly the same problems when adding the same small fractional value repeatedly as
shown in Figure 6 for the unmodified Applesoft and in Figure 7 for the modified Applesoft. Applesoft
appears to have no problems when repeatedly adding the values 0f 0.3, @.5, or @.6. Why is that? For

68

0.1,0.2, 0.4, and 0.8 the mantissa is @x4CCCCCCD, for @.3 and @.6 the mantissa is @x1999999A, for
0.5 the mantissa is @x00000000, for @.7 the mantissa is @x33333333, and for 0.9 the mantissa is
0x66666666. Apparently, the addition and roundup of a mantissa value of @x1999999A creates no
summing issues in Applesoft. The other mantissa values do cause summing issues for successive addition
and roundup in Applesoft. Only the successive subtraction of @.5 and 1.0 is handled well in Applesoft.
After every addition or subtraction, Applesoft must call COPYFAC in order to save the contents of the FAC
floating-point register to memory so that its value can be displayed. This call to COPYFAC requires a call to
RNDUP and that call is unavoidable. I have no doubt that if these addition and subtraction loops remained
entirely within Applesoft, better results would be obtained where RNDUP is called only once. The residual
error is quite small and it shows that values to five or six places are precise in Applesoft.

A=v0, F-0 A=vo, F-0
A=8.1, B = 99.9999963 A=8.1, B = 99.9999963

E = 3.716E@A34E-0E E = 3.716E@A34E-0E
A =8.2, B=199,999933 mo=@.2, B = 199.933933

E = 7.43308138E-06 E = 7.43308138E-06
A=8.2, B = 288 A=8.3, B = 288

E = -2.1286@2@5E-87 E = -2.1286@2@5E-87
A =08.4, B = 399,99995%5 A= @.4, B = 399.993985

E = 1. 348EEBG3RE-BS E = 1. 348EEBG3RE-BS
A= 8.5 E= coo A= 8.5 E= coo
A=8.6, B = CO0, 00G0AG] A =8.6, B = E£@8

E = -4 37721E1E-B7 E = -4 3772161E-B7
A=8.7, B = 706 08E027 A=8.7, B = 706 08E027

E = -2.71582976E-85 E = -2.71582976E-85
A =8.8, B = 799.999971 A o=@.8, B = 7399.93957

E = 2.97328875E-05 E = 2.9732B875E-05
A=8.9, B = 986 BEAR32 A=8.9, B = 986 BEAR32

E = -3.i5443E13E-85 E = -3.i5443E13E-85
A=1.8, E= 1860 A=1.8, E= 1866

E =8 E =8
1 1

Figure 6. Test 1 Unmodified Applesoft Figure 7. Test 1 Modified Applesoft

Non-commutative addition where intermediate operations may present different results to subsequent
operations can occur depending on the positions of those operations that are determined by the formula
evaluation routine. In other words, the consequence of the formula evaluation routine may present different
results when the variables of the formula are manipulated in a slightly different order. For example, the
formula A + BC should present the same result as BC + A. Mr. Thomas correctly points out that in the
unmodified Applesoft, BC in the first formula stays in the FAC floating-point register with its guard byte and
BC in the second formula is rounded and saved as a temporary variable. When A is added to BC, different
results are presented to the user. I wrote Test 2 so that it utilizes the LIST statement to automatically list
the Applesoft program when the DOS RUN command is issued on the Apple Command Line. Test 2 also
prints the contents of each variable showing only what FPOUT is capable of printing even though variable
A is equal to 7FCO0QQ0Q1 in memory in both Figure 8 and in Figure 9. That lowly 32" mantissa bit
interferes in the addition of the second formula because of the inadequate utilization of guard bytes in the
unmodified Applesoft. Figure 9 shows off the redesigned LIST routine and the redesigned FPOUT routine
in the modified Applesoft as well as its immunity to non-commutative addition. LIST increases the number
of characters that are displayed on a TEXT line. FPOUT prefaces a fractional value with a @ if scientific
notation is not utilized. Because the modified Applesoft utilizes guard bytes for every set of internal
arithmetic calculations, it makes no difference whether A is added to BC or whether BC is added to A. That
lowly 32" mantissa bit is managed with a 4@-bit mantissa in either formula. The results from Figure 9
show that non-commutative addition errors have most likely been eliminated in the modified Applesoft.

69

1@ HOME : LIST_: PRINT 1@ HOME : LIST_: FRINT
28 oa =2 (- 2) 4+ 2" ¢ - 3+ Z8a =2~ 0= 2+ 2" C-3)+2"
2 ~T¢ =33 ¢ =733
@A = - A 28 a = - A
48 E =2 ~ ¢ - 1) + 2 ~ ¢ - 32 48 E =2 ~ ¢ - 1) + 2 ~ ¢ - 32
Eg C = 2 ~ ¢ - 13 + 2 ~ & - 23 Eg C = 2 ~ ¢ - 13 + 2 ~ & - 23
B8 PRINT " = ":@ B8 PRINT " = ":@
78 PRINT "E = "B 78 PRINT "E = "B
g8 PRINT "C = _"iC: PRIMT g8 PRINT "C = _"iC: PRINT
98 PRINT "A + Bkl = ";A + B * C 98 PRINT "@ + B#C = " A + B ¥ C
168 FRINT "B¥C + A = ";BE * C + A
188 FPRINT "E*C + A = ";E * C + iia END
118 EMD A = -@.375
E= @5
A= -.375 C= @75
E = .E
C = 75 A+ B¥C = @
E¥C + A = @
A+ B¥C = @
E¥C + A = 1.16415322E-10 1%
1%
Figure 8. Test 2 Unmodified Applesoft Figure 9. Test 2 Modified Applesoft
18 HOME : LIST : PRINT : PRINT 18 HOME : LIST : PRIWT : PRINT
2 p=1-2" ¢ - 3
28 p=1-2"¢- 31 3@ B = 2~ ¢ - 33
33 B = 2~ ¢ - 33 48 C = 2 ~ ¢ - 13
48 C = 2 ~ ¢ - 13 g PRINT "A = "ia
G PRINT "A = "i@ E8 PREINT "E = ":iE
E@ PEINT "E = "iE 78 PEINT "C = ";C: PRINT
78 PRINT "C = ":;C: PRINT g8 PRINT_"C + ¢A + B)¥C - A = ";C +
88 PRINT "C + ¢A + Bd¥C - A = " (A + BY K C - A
C + (A + B} ¥ C - A 98 PRINT "C + C*(A + B) - A = ";C +
98 PRINT_"C + C#¢@ + By - A = " C ¥ ¢A + BY - A
;C + C ¥ (A + B - A 188 END
188 'EMD
ao=1
A= 1 E = 1. 16415322E-18
E = 1.16415322E-18 C=8.c&
C + ¢A + BYKC - A = @
C + (A + B)¥C - A = 4 GEEE1ZETE-10 C + Ck¢A + BY - A = B
C + C¥(A + B - A = 2.32830E44E-10 I
1%
Figure 10. Test 3 Unmodified Applesoft Figure 11. Test 3 Modified Applesoft

Non-commutative multiplication where intermediate operations may present different results to subsequent
operations can occur depending on the positions of those operations that are determined by the formula
evaluation routine. In other words, the consequence of the formula evaluation routine may present different
results when the variables of the formula are manipulated in a slightly different order. For example, the
formula C + (A + B) * C - A should present the same result as C + C * (A + B) - A. Mr. Thomas correctly
points out that the remedy to evaluate these two formulas would involve nontrivial design decisions. He
points out that the guard bytes should be pushed onto the STACK, also. I think he incorrectly believes that
rounding the operands before their utilization would remedy the evaluation of these two formulas. And, of
course, we both concur that the addition, subtraction, and multiplication routines in Applesoft require
modifications in how operands that have different sized significands are utilized. I also wrote Test 3 so
that it utilizes the LIST statement to automatically list the Applesoft program when the DOS RUN command
is issued on the Apple Command Line. Test 3 prints the contents of each variable where variable B is equal
to 6000000000 in memory in both Figure 10 and in Figure 11. Applesoft has difficulty when it is required
to normalize variables for addition and for subtraction when the exponents of those variables differ by 0x20
and more. As shown in Figure 10, I find it a bit surprising that the first formula generates a remainder
difference that is four times the value of the variable B. The second formula generates a remainder

70

difference that is twice the value of the variable B in the unmodified Applesoft. The modified Applesoft
does utilize modifications to its addition, subtraction, and multiplication routines and these routines utilize
guard bytes in all stages of their processing. Guard bytes are also pushed and popped from the STACK in
the modified Applesoft as well. The results from Figure 11 show that non-commutative multiplication
errors have most likely been eliminated in the modified Applesoft.

1@ HOME : LIST : PRIWT : PRINT 18 HOME ; LIST . PRINT : PRINT
28 g =2 ~ ¢ = 12 38 B = 2 "~ ¢ = 243 - 2 ~ (- 332
3@ B =2 ~ ¢ - 24y -2~ (- 33 48 PRINT "A = ";@
S8 PRINT "B_= ";E: PRINT
48 PRINT "A = ";A E@ IF tA + B) = A + B» THEHM PRIMT
£ PREINT "B_= ";B: PRINT "A+E = A+B"
E@ IF (A + By ="(A + B> THEM PRINT 78 IF (A + BE) > (A + E) THEM PRINT
"Q+B = A+B" "O+B > A+BE"
T8 IF tA + B» > A + B) THEHM PRIMT 20 F tA + B < A + B» THEHM PRINMT
"A+E > A+B" "A+E < A+B"
28 IF (A + B) < (A + Ed THEM PRINT 98 END
"O+B < A+B"
98 EMD
A= 8.5
A E = £.34832295E-88
B = 5.94222295E-88 A+E = A+E
A+E > A+E 1%
1%
Figure 12. Test 4 Unmodified Applesoft Figure 13. Test 4 Modified Applesoft

Non-reflexive equality processing where intermediate operations may present different results to
subsequent operations can occur and they are determined by the formula evaluation and comparator
routines. In other words, the consequence of the formula evaluation and comparator routines may present
different results when variables are compared even without changing their order. For example, the formula
A op B should compare precisely to A op B. Mr. Thomas states that the formula evaluator routine rounds
and pushes one of the A op B results onto the stack and leaves the other A op B result in the FAC floating-
point register and unrounded before the results are compared. If Mr. Thomas is referring to the FRMSTAK3
routine in the unmodified Applesoft, the FAC floating-point register is first rounded by the RNDUP routine
before the register is pushed onto the STACK. Rather than call the RNDUP routine in the modified Applesoft,
I push FACGUARD onto the STACK before I push the FAC floating-point mantissa onto the STACK. Likewise,
in the modified Applesoft, I pull ARGUARD off the STACK after I pull the ARG floating-point mantissa off the
STACK in the NOTMATH4 routine. The FAC floating-point register is then compared to the ARG floating-point
register using FPCOMP which I have also modified in the modified Applesoft. I have serious objections to
entertaining the use of any rounded values in Applesoft as a means to fix the Applesoft compare algorithm
as Mr. Thomas suggests. I wrote Test 4 so that it utilizes the LIST statement to automatically list the
Applesoft program when the DOS RUN command is issued on the Apple Command Line. Test 4 prints the
contents of each variable where variable B is equal to 687F800000 in memory in both Figure 12 and in
Figure 13. Applesoft has difficulty when it is required to normalize variables for addition and for
subtraction when the exponents of two variables differ by @x20 and more. These two variables differ by
0x17 so Applesoft should have no problems in adding these two variables, putting their sum onto the STACK,
calculating their sum again, pulling the first sum off the STACK, and then comparing the two sums. Without
question, the mantissas of these two sums should precisely compare. Figure 12 shows that the unmodified
Applesoft has reached the wrong conclusion and that the mantissa of one sum is greater than the mantissa
of the other sum. Figure 13 shows that the modified Applesoft has reached the correct conclusion and that

71

the mantissa of one sum is equal to the mantissa of the other sum. The results from Figure 13 show that
non-reflexive equality processing errors have most likely been eliminated in the modified Applesoft
utilizing far different techniques and more powerful modifications than what Mr. Thomas has suggested.

18 HOME : LIST : PRINT : PRINT 18 HOME : LIST : PRINT.: PRINT
28 p = - (2~ ¢ - 1273

28 A= - (2" ¢ = 1273 38 B = (A s 2) 4 A

33 B = (A 5 2) 5 48 PRINT "a"= ";A: PRINT

48 PRINT "a"= ";A: PRINT 5§ PRINT "E = ";E

S PRINT "E = "B E8 END

E8 END
A = -5.87747175E-39

A = -5.87747176E-39
E= 8.5

E= -.5
1

] =

Figure 14. Test 5 Unmodified Applesoft Figure 15. Test 5 Modified Applesoft

The PROCEXP routine in Applesoft purposefully made all quotients positive when its exponent is found to
be equal to -128. This is not a software bug as Mr. Thomas seems to believe. This was purposefully coded
and I have no idea why it was permitted to stand. Instead of storing zero into FACSIGN as the unmodified
Applesoft does, I always store XORSIGN into FACSIGN in the modified Applesoft regardless whether the
addition of #EXPBIAS to FACEXP is zero or not. Test 5 is shown in Figure 14 for the unmodified Applesoft.
And, indeed, as Mr. Thomas points out, the sign of a small quotient value is wrong. The modified PROCEXP
routine in the modified Applesoft properly handles the sign of the quotient in all cases as shown in Figure
15. The results from Figure 15 show that the sign of the small quotient error in Applesoft has most likely
been eliminated in the modified Applesoft.

1@ HOME : LIST : FRINT 1@ HOME : LIST : FRINT
2B A =2 ~ 0 - 1) + 2~ (- 241 - 2B A =2 ~ (- 1)+ 2 "~ (- 243 - 2
2“6 - 31 A0 = 313
28 B =_1 % @ 28 B = 1 % @
48 PRINT "@A = ";@: PRINT 48 PRINT "@A = ";@: PRINT
S8 PRINT "E = ";E: PRINT S8 PRINT "E = ";E: PRINT
BB C_= B SeBaaaass BB C_= B SABaaaass
T8 PRINT PC = ";C T8 PRINT PC = ";C
g8 END g8 END
A = .COOREEE3 A = B.SEEEEBA5S
E = .CORAAAE1S E = @.COAAAEASS
C = .CE@RAEEz9 C = B.5EEEEBA5S
Imon Imon
*87E . 85F *87E . 85F
AS7E- 41 BA S8 @A @A AS7E- 41 @A S8 @A @A
B22A- 8@ FE 42 @8 2@ @8 0@ A6 BS2@A- B8 FE 42 @8 2@ @8 0@ A6
B85~ 7F 43 00 80 00 90 @9 FD 383~ FE 43 00 80 90 90 @0 FD
Figure 16. Test 6 Unmodified Applesoft Figure 17. Test 6 Modified Applesoft

72

The Applesoft multiplication routine uses its full processing horsepower to shift a multiplicand a full eight
bits when the multiplier byte is zero. In certain numbers where the second and the third mantissa bytes
are zero, the Applesoft multiplication routine calls the SHFTBYT1 routine on behalf of the third mantissa
byte (which is zero) with the C-flag properly set. The SHFTBYT1 routine exits properly and the routine
is designed to clear the C-flag. Now, when the Applesoft multiplication routine calls the SHFTBYT1
routine on behalf of the second mantissa byte (which is zero), the C-flag is not properly set: the C-flag
is clear. The bcs instruction at @xE8FQ is designed as the exit for the Applesoft multiplication routine, the
branch is not taken, and the multiplication routine enters processing that is not intended for this
multiplication routine. Hence, the multiplicand is unfortunately shifted one bit to the right. This is truly a
mistake on behalf of the Applesoft language developers. This is a forgotten possibility that can happen
when processing certain numbers. The solution is to preface the call to the SHFTBYT1 routine with a sec
instruction or to preface the SHFTBYT1 routine itself with a sec instruction. I chose the second option and
Iinserted a sec instruction at @xE8CE at the top of the SHFTBYT1 routine. Only the Applesoft multiplication
routine calls the SHFTBYT1 routine. As shown in Figure 16 for Test 6, the unmodified Applesoft shifts the
multiplicand one bit to the right when the formula B = 1*A is processed. The variable C is saved properly
to memory but the values of variables A, B, and C are not printed with their correct values. As shown in
Figure 17 for Test 6, the modified Applesoft does not shift the multiplicand erroneously when the formula
B = 1*Ais processed. The variable C is saved properly to memory and the value of variables A, B, and C are
printed with their correct values. Figure 17 demonstrates that the binary to decimal conversion algorithm
is working correctly whereas the binary to decimal conversion algorithm in Figure 16 is not working
correctly. I can fiercely state one more time, the results from Figure 17 show that non-commutative
multiplication errors have most likely been eliminated in the modified Applesoft.

Mr. Thomas does elaborate on the decimal to binary and the binary to decimal conversion routines that
reside in Applesoft. Surely, the GETINT decimal to binary conversion routine at @xEC4A does its processing
remarkably well. There is no question that the unmodified Applesoft converts the value of C properly into
memory. My only complaint about the GETINT routine is that the Applesoft language developers inserted
the ADDZFAC routine unnecessarily into the middle of the GETINT routine. The FPOUT binary to decimal
conversion routine at @xED34 depends on the services of the key routines MULFAC10, DIVFAC10, and
FPCOMP. I have modified and fine-tuned all of these routines in the modified Applesoft. The results of this
concerted effort is on display in Figure 17. No longer are the values of variables printed incorrectly. Having
implemented the use of guard bytes in all stages of floating-point arithmetic assists the binary to decimal
conversion routine to produce a far more accurate representation of a binary number that resides in memory.

The POWER * statement in Applesoft depends on INT, FPCOMP, LN, MULT, and EXP processing. Both the LN
and the EXP routines must each process a Taylor polynomial expansion. Both of these polynomial
expansions are supplied with modified polynomials over which I have no control except for the sine
polynomials. These polynomials have been precisely tuned in order to produce the nicely behaved output
values that are shown for the variable A in Figure 18 for Test 7, or at least up to 1.0E-09. Perhaps a DATA
statement would have been a better design choice to use for this test rather than using the POWER statement.
This test was designed by Mr. Thomas so I yield to his test design for the moment. POWER statement
processing tends to produce undervalued variables in the unmodified Applesoft as shown in Figure 18 and
the modified Applesoft tends to produce overvalued variables as shown in Figure 19. Both versions of
Applesoft do not produce a ratio of 1.0 for angles that approach zero, or at least less than @.001 radians
as shown in both figures. The results that are shown in Figures 20 and 21 for Test 7.1 insulate the values
of A from the POWER statement so that a better comparison of the sine ratios can be easily observed. These
sine ratios in the two Applesoft versions are nearly identical which should be expected since the eleven
theoretical sine polynomials that are used in the modified Applesoft yield virtually the same results as the
six modified sine polynomials that are used in the unmodified Applesoft.

73

FPRIMT

HTRE 22:

Do EAWZT
I o= X
I

DEEEE G5
=00 -

it Lt La g pote glay fun TH Y |
L0000 000 E =00
pgnitglnnloging] polUyluging]
oy lagleglugioelo yVyho o
yalenlngloginglogiunlWylus]
plugluglaglogio glo gl il
unlagloglogiogio glo gloglie
uglogingloginglogioglagiog]
uglegingloginylogioglogioy]

EEEEEEREEEEEE
W nu
POA0 A A0 PG A0 PG A A A A Y

10r-00 —i0y
EEERE
[11
il il
e iy
EERERE D
DERERE T
RN EE I EEE
EEREEEEE—EE
13| EEEE | S

LU ELE S S E LN
—EEEEEEEENENEE

BE1E-B4

L L B e e e e e P P P P
W mnmwwmnnnn
ot o o e o e ol e e e i

1%

FPRIMT

HTRE 22:

Do EAAWIZT
I o= X
I

DEEEE EE
=00 -

o e ot
pnlapinnlogio u gl lain)
pgniaglnnlogingl el Uy luging]
oty laglnglagionlo o Vyho o
yplunluglaglogiogluellyus)
yplagloglaglogio glo gl it el
unloginglogioylogloglogl i
uglogingloginglogioglogiog]
uglogingloginglogioylogioy]

W nu
POA0 A A0 PG A0 PG A A A A Y

Lp o LNl pelunlnglugluglog)
SEREREEEEIm
T R UL U ey Ty Ty
— @l -
s v =

W mnmwwmnnnn
ot e e nn oe o o e e e oe o o

1%

Figure 19. Test 7 Modified Applesoft

Figure 18. Test 7 Unmodified Applesoft

=
— I W wotwn - ok
Lix]=] Ll— (ialuslanlngho uglooinflng)
< — - Rnlapluninglog]plWylngion}
= =t hogrlngingloglonlo JUyho o
nxT Li— pppluninglogluglugiunllyles]
(| [aplagioginglngluglog] et
(== I L Lonlogiogiogloglogloglo gl
fa ntn e - - fugluglogloglagiugiogloglog]
T -
A= - EEEEEEEEEEENE
<L i
=Ll ~ibL I mmwwmmnmn
ZE M =t
LR ML e A0 AT RS A A0 AT AT PG A A A Y
== I
[n Rt} i
——1
. = o=
O — -
== =00
[]
e = 11|
- | Ehea e P
I <T s
o 1" - L LD - 00 TS0y
w0 <T | ENEEENENENE
L =Ll L T U Y B |
ol e s L T Ll L bl g
QoIER e = REEEEREEEENEE
= TR TR N
ENE e v v v A A e e
=
EE SN Wi mnnnn
~—i 0
o oo o o e o o o e e o o |
[
s
Ll w00ILIun Mo
= (nluninnloglnglnglolal o)
<I - Ranlapluninglog] plWylngion}
[Li— hogaplngingloglonls JUyho o
=M I - [apluninginglnglugloni yles]
= L=y [aplagiogioglngloglog] et el
== —— punlngiogloglugiugioglog] g
< = puglugiogloglugiugioglogloy]
Il =Ll fuglugiogloglagiugiogloglog]
f=T1] T S
<L A w -
L= ~—iT I mmwwmmnmn
. =
= ol A0 AT RS A A0 AT AT PG A A A Y
- I —
R] w -
— —00
- -1
o L ~—iL
= - S
o w0l s
] ==
1~ — | -
[[Ja ==] il
L —iL
L I L
w =T = - O L0 - 00 =y
L Il — ENENEENENENE
jan iy} ZALl— b JOL L L U |
L = W — | —Sudulodiidolng
+ et e e e
=
= SN Wi mnnnn
i 07— F:
o o o o o e o e e o o |

Figure 21. Test 7.1 Modified Applesoft

Figure 20. Test 7.1 Unmodified Applesoft

FRIM

=
- Ll—
oy — - Ti— 00
= =t Enonor-meg o=
[t L— D= = 0000
1} + + LU OIS
A NT]IT] DO i [0
AT i 0= 000N
== - = =000 F- S0
IT =+ =S E0EINLeILI
+— LAL OO0t 00
[i+ s 00 @ e
<L = —L Ll o BT B
—=Ll-T =t I & SEEEEE
el = -
= = = Wawwmmmwmmmuwn
e - =+
o —L A9 A0 A0 A0 A0 A A0 RS AG A A0 Ay
— —
I = -
o= =00
= = =+
L 1]
L b bl U o B
A =Z - =
I - I
o - + ENEEE 0
— g I EENENEN R
L = el SRS+ + + +
s Qi e SEREREE LWL
QoI TR+ EEEEEEEEEENE
T~ +W D@EEREE2EE - - - -
A @
2E = @@ Wi nnnn
~—i 0
= o e o o0 e e ol o e e
A
<
= ~—00 N
I L— LU0 T —
1} + - Ralinlnginglinbolunlngion}
Lz LALLM ND00-- -
A - i L L ele gl T Ny Tl [V]
I -+ E0A=0L00—qE
<L -3 =l = 00oLn -y
= o+ ool Fy b up el |
A X W - LA a0 0=
Tl —iq R . B B ol]
=l - -+ Fro-r - e e EEE
TETA Sl
LR e L] Wawwmmmwmmmuwn
o - = = -
| o —00 A9 A0 A0 A0 A0 A A0 RS AG A A0 Ay
—Z I -+
- =l
DEAR S
= — -
o =
e = S
- ~Z =+ =
Il <= —il I
O i EEE
Lo O " Sx ¥ Y EENEE
w =z =+ EEEE S E 0
A - Tl ENENEENEN NS
QoMERT A+ DERERERERDE+ + + +
I Jwl - @EEEDEREEE LWL
=
EE EE Wi nnnn
~—i 0
o n o o e e ol o e e

Figure 23. Test 8 Modified Applesoft

Figure 22. Test 8 Unmodified Applesoft

74

Mr. Thomas conducted another series of sine calculations specifically for very large arguments. These
calculations are shown in Figures 22 and 23 for Test 8. I cannot be sure what the point is for Test 8 except
to show that for very large arguments, the sine functions will produce a value of zero. In fact, the modified
Applesoft produces a value of zero for an input argument that is not as large as the input argument in the
unmodified Applesoft, that is, at 1. QE+@8 rather than at 1.0E+09. Mr. Thomas theorizes that the argument
reduction algorithm that is utilized in sine processing is the actual culprit for that function being unable to
obtain a valid quotient remainder that is obtained when the input argument is successively divided by 2*r.
In its attempt to properly position the input argument in the correct quadrant may also contribute to sine
processing being unable to process this very small quotient. Mr. Sander-Cederlof suggests that the sine
argument reduction algorithm can be replaced with far simpler ways in order to determine an input angle
as a fraction of a full circle and fold the range of that angle into a quarter circle. This suggestion infers that
the utilization of a MOD function would be a far better choice in processing very large arguments for the
sine function. Mr. Thomas correctly points out that the flaws in the sine argument reduction algorithm
are exacerbated in the cosine and in the tangent functions because those two functions depend entirely
on the sine function. In Applesoft cosine processing, an argument is processed as cos(x) = sin(x +
n/2). In Applesoft tangent processing, an argument is processed as tan(x) = sin(x) / cos(x). And,
the Applesoft tangent processing is even further flawed since tan(x) = sin(x) / sin(x + n/2). In
other words, Applesoft tangent processing requires two calls to the sine function. Both the cosine and
the tangent functions inherit the processing flaws that are native to the sine function.

18 HOWE - CIST : FRIAT
38 FOR I = 1 TO 12: READ A:B = 1@ HOME : LIST : PRINT
TAM (@Y ~# A: PRINT "a = "; 38 FOR I = 1 TO 12: READ A:B =_ TAH
;: HTAE 22:. PRINT "B = "; HEXT CAY 4 @B: PRINT "a = ",f;: HTAEB
2. PRINT "B = ";B: HEXT
3@ EHD 3@ EHD
ige DaTa .1, .81,1E-3,1E-4,1E-G ige DaTa .1, .81,1E-3,1E-4,1E-5,1E-
1E-&,1E-7,1EX5,1E-9,1E-1a, 1E 6,1E-7,1E-2,1E-9 iE-1m,1E-11, IE
-11,iE-12 -iz
g = .1 E = 1. 00334672 6= 8.1 E = 1.00334672
g = .81 E = 1. 000083334 = B 61 E = 1. BBAA3335
4 = iE-B3 E = 1. G0RAAASS § = 1.BE-@3 E = 1. GORAAASS
A4 = 1E-B4 E =1 4 = 1. BE-B4 E =1
&4 = 1E-BS E = .99999994 4 = 1. BE-@AS E = B.99999994
&4 = 1E-BE E = .999335797 4 = 1. BE-A8R E = B.9993935797
i = 1E-B7 E = .9939954542 § = 1. BE-@7 E = B.99935451
A4 = 1E-B2 E = .99975caas 4 = 1. BE-@2 E = B.993975cazqg
4 = 1E-B9 E = .9971234354 4 = 1. BE-A9 E = B.9371243594
4 = 1E-1@ E =8 f = 1. BE-1A E =08
i = 1E-11 E =8 f = 1. BE-11 E =8
f = 1E-12 E=208 A = 1 BE-12 E=208
1% 1
Figure 24. Test 9 Unmodified Applesoft Figure 25. Test 9 Modified Applesoft

Another good test that shows off the behavior of the Applesoft tangent function for a range of arguments
from small arguments to very small arguments is shown in Figures 24 and 25 for Test 9. For a small input
argument, the tangent function returns with the same value as the input argument. Thus, when that value
is divided by the input argument, a quotient of 1.0 should be obtained. The quotients that are shown in
Figures 24 and 25 for the unmodified Applesoft and for the modified Applesoft, respectively, are nearly
identical, though they are not precisely equal to 1.0 in all cases.

A very good way to test the Applesoft sine and cosine functions and their behavior together is to utilize
a trigonometric identity that generates a known and easy to verify output. One trigonometric identity is
sin(x)A2 + cos(x)A2 =1. I have already established that the Applesoft POWER and EXP functions depend

75

on modified polynomials and that these functions do not provide optimal results for small input values. It
is not necessary to utilize the POWER function in Test 10. One can simply multiply sin(x) times sin(x)
to obtain sin(x)A2. This is precisely what I do in Test 1@ rather than what Mr. Thomas does in his version
of this same test. Anyone who has studied this document will come to the conclusion that it is better to
avoid the Applesoft POWER and EXP functions if at all possible. Even the multiply routine in the unmodified
Applesoft is far more trustworthy over the Applesoft POWER and EXP functions as shown in Figure 26.
However, the arithmetic routines in the modified Applesoft are obviously far more precise in calculating
this particular trigonometric identity as shown in Figure 27. The multiplication of the Applesoft sine and
cos1ine functions and their addition is precisely 1.0 until extraordinarily large input values are utilized. I
believe that most scientists and engineers would restrict their utilization of such input values to those that

might transcribe a circle no more than twice.

i@ HOWE : LIST : FRIAT i@ HOWE : LIST : FRIAT
38 FOR I = 1 TO 12: READ A: PRINT 38 FOR I = 1 TO 12: READ A: PRINT
ngo="nopy . HTAE 18: PRIMNT 'S ng o="v.pi . HTAE 18: PRIMT "SUM
UM = "; SIH €@ % SIHN cAad + = v; sid’ ¢ay ¥ SIM <Ay + COS
COS chY * CO5 cad: HEXT (@) ok COS CAd: HEXT
38 EHD 38 EHND
188 DATe 18,188, 1000, 1E+4, 1E+5 188 DaTe _1@,180,1000,1E+4, 1E+5, 1E
1E+E, 1E+7, 1E+5, 1E+5, 1E+16, 1 +E, 1E+7, 1E+5, 1E+9, 1E+1@, 1E+11,1
E+11,iE+12 E+iz
A = 1@ SUM = 1 A = 1@ SUM = 1
A = 160 Z0M = 1.000@66682 i = 160 Z0M = 1
A = 1000 S0M = 1 A = 1000 S0M = 1
A4 = 10060 S0M = 1 A4 = 10060 S0M = 1
i = 100660 Z0M = 1.8@@@@171 i = 100660 S0M = 1
i = 1G00EAA Z0M = 1 A = 1GEEEAAE Z0M = 1
A = 1BBERREAA S0M = 997658571 A = 1BBERREAA S0M = 1
4 = 1BBERRREAA S0M = i 4 = 1DBEERERA S0M = 1
i = 1E+B9 S0M = 1.35355339 i = 1. BE+A9 Z0M = B.971286599
i = 1E+1@ Z0M = @ f§ = 1. BE+1A Z0M = @
A = 1E+11 S0M = B = 1. BE+11 S0M = B
f = 1E+12 S0M = B f = 1. BE+12 S0M = B
1% 1

Figure 26. Test 10 Unmodified Applesoft

Figure 27. Test 10 Modified Applesoft

1@ HOWE : LIST - FRIHT 1@ HOWE : LIST - FRIHT
38 FOR I = 1. TO 12: READ A: PRINT 38 FOR I = 1.TO 12: READ A: PRINT
g1 = ", SIH (2 %k Fo;: HTRE "Al = ", SIN (2 % A);: HTAB 28:
28: PRINT "pe = ";2 % SIH ¢ FRINT "aZ2 = i;2 % SIN ¢a» % COS
G % COS ¢AY: MEXT CAY: HEXT
38 END 38 EHD
188 DaTe 18,168, 1000, 1E+4, 1E+5 168 DaTe _1@,180,1000,1E+4, 1E+5, 1E
1E+E, 1E+7, 1E+5, 1E+5, 1E+16, 1 +E, 1E+7, 1E+5, 1E+9, 1E+1@, 1E+11,1
E+11,iE+12 E+iz
f#1 = .912945251 A2 = .912945251 1 = B.912945251 @2 = @.91294525
Al = -.87329%282 @Z = —.872297294 Al = -B.873297318 @2 = -6.872297321
A1 = .93BB33427 A2 = .930B33427 A1 = B.932BA39928 @2 = B.4923883992%
A1 = .521923@25 Az = .S819%3mZg A1 = B.E219826596 @2 = B.GE1982E9E
A1 = - B7146@593 A2 = —_ G714EB9542 Al = -B. B714773291 A2 = -A.@714773291
A1 = - E554923565F @2 = - E554923E53 f#1 = -B.ES5E485578 @2 = -@.65E485E78
A1 = - 712823868 @Z = - TEB1204E A1 = -B. 767692137 G2 = -B.767692137
41 = - BE7IEE5395E @2 = - E715539ES A1 = -0 BER4A553E2 @2 = -B.6ER4BZ3E2
Al = 1 A% = 1.3BEEE237 A1 = @ A2 = B
Al = @ B2 = @ A1 = @ B2 = B
Al = B A2 = B Al = B A2 = B
Al = B Az = B Al = B Az = B
1% 1

Figure 28. Test 11 Unmodified Applesoft

Figure 29. Test 11 Modified Applesoft

There is another useful trigonometric identity that can be utilized in order to provide a means to expose
problems in the Applesoft trigonometric functions and in the Applesoft arithmetic routines.

76

This

trigonometric identity is sin(2x) =2 * sin(x) * cos(x). Test 11 is designed to calculate and show the
result from sin(2x) processing and calculate and show the result from 2 * sin(x) * cos(x) processing.
Figure 28 shows some variation of the results for the unmodified Applesoft. On the other hand, Figure 29
shows far less, if any, variation of the results for the modified Applesoft throughout the entire numerical
range that is tested. This numerical range, again, is artificial and certainly far beyond that which is practical
in any research or hardware analysis of reasonable functionality. Perhaps Mr. Thomas might have
subtracted these two results or divided these two results to more clearly visualize the degree of equalness
for this trigonometric identity as computed by the respective Applesoft. It is worth repeating that the
modified Applesoft will provide excellent results for all trigonometric functions as long as the input variable
is restricted in its utilization such that its value might transcribe a circle no more than twice.

Mr. Thomas does a thorough review of all of the implications that the above tests have shown. The
Applesoft programmer has been failed by less accurate floating-point variables, the lack of guard bytes, the
less than stellar binary to decimal conversions, the technical flaws in multiplication, a poorly designed
argument reduction algorithm for the trigonometric functions, all of the excessive rounding, the stack
pushes and pops, and the incompetence of the logarithmic and exponential functions. The errors, the
failures, and the bugs that are inherent in the unmodified Applesoft have now been exposed and they have
all been corrected in the modified Applesoft within the space that is provided for Applesoft as well as the
addition of new functionality and better functionality for the entire Applesoft statement repertoire.

My only regret is not knowing how the modified polynomials are calculated for the logarithm, the
exponential, the sine, and the arctangent funcyions. That was genius.

Installing Applesoft

My journey through Applesoft has only been an intellectual exercise unless I can actually inject this
Applesoft into a real Apple //e computer and use this Applesoft for something creative. To use the modified
Applesoft in an Apple //e computer, the Applesoft must be programmed into either a 128 Kb EPROM or
two 64 Kb EPROMSs depending on the model of the Apple //e. The Lisa assembler creates four output files
when Lisa assembles my source code for the CXROM, for Applesoft, and for the ROM Monitor. The current
version of my source code is ROM2E . SW16GCR. 14. The four output files that Lisa generates are COROM,
DOROM, EQROM, and FOROM. Each of these four files are 4096 or @x1000 bytes in size. [wrote an EXEC file
BLDROMS that I put on the Virtual][ROM 14 Build Volume and that EXEC file builds the single
SW16GCR. CF.ROM binary file and it builds the SW16GCR. CD.ROM and the SW16GCF . EF .ROM pair of binary
files. These files can be used directly by the PROMGRAMER hardware in order to program the desired
EPROMs for a particular Apple //e. This is certainly the easiest and the most direct path in having the
modified Applesoft internal to a real Apple //e computer. The BLDROMS EXEC file is shown in Figure 30.

I enjoy the freedom and the ease to develop 6502 assembly language software for an Apple //e computer
using an Apple //e emulator on my Apple MacBook Pro computer. The Apple //e emulator that I have
always used and trusted is Virtual][which is written and copyright by Gerard Putter. I have had a license
to use Virtual][for many years and I am currently using Version 12.1.1. Building a 256 Kb software ROM
for Virtual][is a little difficult and it requires the assistance of a C language program that processes in a
UNIX environment. The 256 Kb software ROM is actually constructed by another EXEC file BLDVZROM
that I also put on the Virtual][ROM 14 Build Volume. The BLDVZROM EXEC file is shown in Figure 31.

77

BLOAD
BLOAD
BSAVE
BLOAD
BLOAD
BSAVE
BSAVE

COROM, A$1000, D1

DOROM, A$2000
SW16GCR.CD.ROM,A$1000, L$2000,D2, B
EQROM, A$3000, D1

FOROM, A$4002
SW16GCR.EF.ROM,A$3000, L$2000,D2, B
SW16GCR.CF.ROM,A$1000, L$4000, B

Figure 30. BLDROM EXEC File

BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BLOAD
BSAVE

ZEROPAGE ,A$1000, D2
ZEROPAGE ,A$1100
ZEROPAGE ,A$1200
PAGE3,A$1300
ZEROPAGE ,A$1400
ZEROPAGE ,A$1500
PAGE6,A$1600
ZEROPAGE ,A$1700
ZEROPAGE ,A$1800
ZEROPAGE ,A$1900
ZEROPAGE ,A$1A00
ZEROPAGE ,A$1B00
ZEROPAGE ,A$1C00
ZEROPAGE ,A$1D00
ZEROPAGE ,A$1EQ0
ZEROPAGE ,A$1F00
DOROM, A$2000, D1
EQROM, A$3000
FOROM, A$4002
COROM, A$5000
DOROM, A$6000
EQROM, A$7000
FOROM, A$8002
APPLEZE . SW16GCR. 14 .ROM,A$1000, L $8000 , D2

PAGE3 is a binary file and this file contains 256 bytes of 6502 instructions that reside at @xC300:C3FF in
the Apple //e. PAGEG is also a binary file and this file contains 256 bytes of 6502 instructions that reside at
0xC600:C6FF in the Apple //e. ZEROPAGE is a binary file that contains 256 bytes of zero. I do not believe
that the HELP pages for Virtual][specifies the layout nor the precise content of a Virtual][software ROM
file for the emulation of an Apple //e. I believe that I constructed a Virtual][software ROM file simply by
inspecting the content of various software ROM files that were provided with earlier versions of the Virtual

Figure 31. BLDV2ROM EXEC File

78

][application many years ago. The BLDVZROM EXEC file constructs a Virtual][software ROM file for the
emulation of an Apple //e and it uses all of the components that are shown in Figure 31. The BLDVZROM
EXEC file generates the APPLE2E . SW16GCR .14 .ROM file in the Virtual][ROM 14 Build Volume. The
APPLEZE .SW16GCR. 14 .ROM file must be copied from the Virtual][ROM 14 Build Volume and into the
file system of the Apple MacBook Pro. Once this software ROM file is in the Apple MacBook Pro file
system, it can be copied to /Users/<user>/Library/"Application Support"/"Virtual J["/ROM
where <user> is the Apple MacBook Pro user account name. Apple MacBook Pro users may find that
their Library directory is hidden, so that volume must be unhidden in order to utilize the cleanup
command file that is found in the SW16GCR. 14.20250412 directory.

xterm -geometry 116x32+5+5 -fa Monaco -fs 10 &
xterm -geometry 104x32+950+5 -fa Monaco -fs 10 &
xterm -geometry 116x20+5+610 -fa Monaco -fs 10 &
xterm -geometry 104x20+950+610 -fa Monaco -fs 10 &

Figure 32. SETUP Command File

I prefer to use the XQuartz environment when I develop C language programs on my Apple MacBook Pro
computer. The first command that I issue in the XQuartz window is the csh command in order to begin
the C shell or the tcsh environment in that window. I am sure individuals have their own preference of
the shell that they prefer to use, and that is just fine with me. However, I have been using the C shell for
nearly my entire programming career and it is the shell that I prefer and it is the shell that works best with
my C language software products. I encourage everyone to become acquainted with the C shell only for
the purpose of exploring my unique software products. You should certainly return to the shell of your
choice. Perhaps, you could even transpose my software products into your favorite shell environment. The
C shell environment allows me to process an alius file in order to have various aliases available to me
while in this window environment. The next command that I issue is the setup command in order to create
and have available to me several xterm windows. Figure 32 shows an example setup command file. In
any of these xterm windows, cd to a convenient location where the contents of the ModSoft. tar file can
be extracted. These contents include the appleV2code directory, the My Applesoft Journey.pdf file, and
the ROM2E.14 directory. In order to extract the contents of the ModSoft.tar file, the tar xvf
ModSoft.tar command can be used. The appleVZ2code directory contains all of the tools that are
necessary in order to read the 2eRoms/SW16GCR.14.20250412/ROM2E.SW16GCR.14.Build.dsk file
that resides in the appleVZ2code directory. After a successful assembly and build of the
ROMZ2E . SW16GCR.14.Image disk image from the ROM2E.SW16GCR.14.Source disk image is made by
Lisa, the EXEC files on the ROM2E . SW16GCR.14.Build.dsk disk image can be processed and that disk
image file can be copied into the appleVZ2code/2eRoms/SW16GCR.14.20250412 directory. The
cleanup command file that is found in the SW16GCR. 14.20250412 directory deletes all of the unnecessary
files that are copied from the Virtual][ROM 14 Build Volume. It also copies the
APPLEZE .SW16GCR. 14 .ROM file to the Virtual][ROM directory so that the Virtual][application can utilize
that software ROM file in order to initialize the ROM environment of the emulated Apple //e.

79

The C language programming environment that is available on the Apple MacBook Pro is extensive.
However, the Apple MacBook Pro programming environment is somewhat different than what is typically
found on a standard UNIX platform. I have designed the menu command file that is found in the
appleV2code directory to initialize the necessary environment variables so that menu will correctly execute
within the programming environments with which I am acquainted. Darwin is one of those environments
that menu knows about. In order to modify any of the source code files that are found in the source directory
or to add new source code files to the source directory, it is important to first execute the command
run.config. Now, the environment variable HOME_PATH is correctly initialized and the makefile in the
source directory and the makefile in the binary directory will operate correctly. Of course, if any source
code files are added to the source directory or removed from the source directory, the makefile in the
source directory and the makefile in the binary directory will need to be modified in order to generate
the object code files in the source directory and the executable files in the binary directory. If any source
code file is modified in the source directory, the makefile in the source directory needs to execute and
the makefile in the binary directory needs to execute. If you wish to begin with a fresh start and compile
and link all of the source code files, simply enter the command make clean and then enter the command
make first in the source directory and then make in the binary directory. Hopefully, no compile or link
errors should occur.

The final step in utilizing a new software ROM in Virtual][on an Apple MacBook Pro computer is to have
Virtual][correctly load that software ROM. Start the Virtual][application and press Reset in the upper
right-hand corner. Select the Machine/Configure tab. On the left-hand side, open the Components
selection and select ROM memory. On the right-hand side, press the Select... button. From the MacBook
Pro file system display window, select the desired software ROM. Changing the software ROM always
requires restarting the virtual machine.

80

The following table lists all of the page-zero variables that are used by Applesoft, by the ROM Monitor,

and by DOS 4.5.08H.

Appendix A

Address | Applesoft| Other Monitor |DOS 4.5.08 Description
00 GOWARM ROL LOCO 00:03, IJMP RESTART
01 LOC1 ROH LOC1
02 LOC2
03 GOSTROUT 03:05, IJMP STROUT
04 :
05
06 Free
Q7 Free
08 Free
09 Free
0A GOUSR QA:0C, IJMP <USER address>
0B :
0C :
@D BYTVALUE | CHARAC CHARAC
QE ENDCHR
QF EOLPTR NUMDIM TOKNCNTR
10 DIMFLG Dimension flag
11 VALTY8P
12 Free
13 DATAFLG | GARFLG
14 SUBFLG Subscript flag
15 INPUTFLG
16 CPRMASK | TOGLFLG
17 Free
18 R12L Free (SWEET16 STACK Pointer)
19 R12H Free
1A SHAPE 1A:1B
1B :
1C COLBITS R14L
1D COLCOUNT R14H
1E R15L Free
1F R15H Free
20 WNDLFT Left window column
21 WNDWDTH Window width
22 WNDTOP Top window line
23 WNDBTM Bottom window line
24 CH Horizontal cursor position

81

25 v Vertical cursor position
26 TEMPZ GBASL BUFRADRZ |Graphic plot base address
27 TEMP2Z GBASH :

28 BASL BASEZ |Window base address

29 BASH :

2A ASPTRSAV | BASZL CURTRKZ |Scrolling base address
2B BASZH SLOT16Z

2C LMNEM H2 DRVFLAG |ADRDATMK, ADRFIELD

2D RMNEM V2 SECFNDZ

2E FORMAT MASK TRKFNDZ | CHKSUM

2F LASTIN LENGTH VOLFNDZ |SIGN

30 COLOR HMASK HIRES mask, LORES color
31 MODE Command processing

32 INVFLG Video format control

33 PROMPT Prompt character

34 YSAV PHASE |Command processing

35 SYNCNT YSAV1 PAGECNT |[SAVXYREG, CMDINDXZ

36 CSWL Character output

37 CSWH

38 KSWL Character input

39 KSWH

3A PCL Program counter

3B PCH

3C MOTORTIM AlL ROMTEMPZ [Pointer #1

3D AlH ROMSECTR

3E ODDBITSZ A2L BUFADR2Z |[Pointer #2

3F A2H SECTORZ

40 ROMDATA A3L TRACKZ |Pointer #3; FILEBUFZ 40:41
41 ROMTRACK A3H VOLUMEZ

42 A4L BUFADRZ |Pointer #4; 42:43

43 A4H

44 MACSTAT ASL OPRND DIRINDX |[General value

45 T2GUARD AREG A-register value

46 XREG X-register value

47 YREG Y-register value

48 PREG P-register value

49 SPNT STACK pointer value

4A IOBADR [4A:4B

4B :

4C DOSPTR |4C:4D

4D :

4E RNDL Random number

4F RNDH

50 LINNUM ACL LINNUM (50:51

51 : ACH

52 TEMPPT Temporary string index
53 LASTPT 53:54, Last string pointer

82

54

55 TEMPST 55:5D, String scratch name/len
56 :

57

58

59

5A DOSTEMP1

5B DOSTEMP?2

5C DOSBUFR |5C:5D

5D : :

SE INDEX S5E:5F, Move string stack

5F :

60 DEST 60:61

6l OFFSET Trick assembler in SHFTBYT1, SHFTBYT2
62 MULMANT 62:65, Multiply/Divide result
63 :

64

65 :

66 MULGUARD

67 PRGTAB 67:68, Program start

68 :

69 VARTAB 69:6A, Simple variables

6A :

6B ARYTAB 6B:6C, Array variables

6C :

6D STREND 6D:6E, Array end

6E :

6F FRETOP 6F:70, String variables

70 :

71 FRESPC 71:72, String variables

72 :

73 MEMSIZE HIMEM 73:74, Top of memory

74 :

75 CURLIN 75:76, Line being interpreted
76 : ASRUN RUN flag

77 OLDLIN 77:78, Last interpreted line
78 :

79 TEXTPTR 79:7A, Current TEXT pointer
7A :

7B DATLIN 7B:7C, Line containing data
7C :

7D DATPTR 7D:7E, Absolute data location
7E :

7F SRCPTR 7F:80, Current input source
80 :

81 VARNAM 81:82, Last variable’s name
82 :

83

83 VARPTR 83:84, Last variable’s value
84 :

85 FORPTR 85:86, General pointer

86 :

87 TXPTRSAV | LASTOP 87:88

88 :

89 CPRTYPE

8A FUNCNAM TEMP3 8A:8B; 8A:8E, FP Register #3
8B : :

8C DSCPTR 8C:8D

8D :

8E :

8F T3GUARD T3 guard byte

90 JMPADRS GETS, JMP <address>

91 RTNADR

92 ARGGUARD ARG guard byte

93 TEMP1 93:97, FP Register #1

94 ARYPNT : 94:95, HIGHDS, LEN, Block trans
95 PROCESS (GARBAG)

96 HIGHTR 96:97, Block transfer

97 : :

98 TEMP2 98:9C, FP Register #2

99 COUNTER : (FPOUT)

9A EXPCOUNT (FPOUT), (GETINT)

9B LOWTR 9B:9C, DPFLAG (GETINT)

9C EXPSIGN (GETINT)

9D DSCTMP 9D:9F, FACEXP, FAC exponent
9E FACMANT 9E:Al1, FAC mantissa

9F :

AQ VARPTR AQ:A1, Variable address pointer
Al : :

A2 FACSIGN FAC sign bit

A3 COEFNUM | MINUSLOC

A4 EXTSIGN SIGNEXT, Additional sign bit
A5 ARGEXP ARG exponent

Ao ARGMANT AG:A9, ARG mantissa

A7 :

A8

A9 :

AA ARGSIGN ARG sign bit

AB XORSIGN | STRING1 ARGAFAC sign bit, AB:AC

AC FACGUARD : FAC guard byte

AD COEFPTR | STRING2 AD:AE, SAVY (FPOUT)

AE :

AF PRGEND AF:B@, Program end

BO :

Bl CHRGET B1:C8, Get next character

84

B2

B3

B4

B5

Bo

B7

CHRGOT

Get current character

B8

B8:B9, Current character pointer

B9

TXTPTR

BA

BB

BC

BD

BE

BF

Co

C1

C2

3

C4

G5

Co

Ccv

8

€9

(9:CC, Random number seed

CA

TIRAND

CB

CC

CD

SIGNFLG

SPCLFLAG

(TAN); (GARBAG)

CE

Free

CF

Free

DO

HRXDELTA

SHPVAL

DO:D1 HIRES pointer

D1

ROTQVAL

ROTQVAL

D2

HRYDELTA

ROTHVAL

ROTHVAL

D3

HRFLAG

ROTVVAL

D3:D4, ROTVVAL

D4

HRWORK

ROTHSUM

ROTHSUM

D5

HRYEND

ROTVSUM

ROTVSUM

Do

RUNFLAG

PROTECT

Used for RUN command

D7

SHPOLD

SUBCODEZ

SUBCODE page-zero value

D8

ERRFLG

ASONERR

ONERR flag

D9

RKEYWORD

DA

DA:DB, Line containing error

DB

ERRLIN

DC

DC:DD, TEXTPTR save for HNDLERR

DD

ERRPOS

DE

ERRNUM

Error number or code

DF

ERRSTK

STACK pointer before error

EQ

HRXCOOR

EQ:E1, HIRES X-coordinate

85

El

HRYCOOR

E2 HIRES Y-coordinate

E3 Free

E4 HRCOLOR HIRES color byte

ES HRHORZ HIRES horizontal byte index

E6 HRPAG HIRES active page (0x20 or 0x40)
E7 HRSCALE HIRES scale factor

E8 HRSHPTBL E8:E9, HIRES Shape Table address
E9 :

EA HRCOLCNT HIRES collision counter

EB Free

EC Free

ED Free

EE Free

EF Free

FO FIRST LORES plot destination

F1 SPEEDBYT Display speed control, 0x00:FF
F2 TRACEFLG

F3 FLASHBYT Output character control mask
F4 TXTPTRSV F4:F5, ONERR TEXT pointer save
F5 :

F6 CURLINSV F6:F7, ONERR line pointer save
F7 :

F8 REMSTK

F9 HRROT HIRES shape rotation factor

FA Free

FB Free

FC Free

FD Free

FE Free

FF Free

Table A.1. Page-Zero Definitions

86

Appendix B

The following table lists all of the Applesoft statements, their token number, and the location in Applesoft
where that statement is processed.

Statement | Token Address Description
END 0x80 OxD870 |[See 0xDO0A, adr BEND-1; start of BASIC statements
FOR 0x81 0xD766 |[See @xD@@2, adr BFOR-1
NEXT 0x82 OxDCF9 |See 0xD0O04, adr BNEXT-1
DATA 0x83 0xD995 |[See 0OxDOO6, adr BDATA-1
INPUT Ox84 OxDBB2 |[See 0xDO@8, adr BINPUT-1
DEL 0x85 OxF331 |[See OxDOOA, adr BDEL-1
DIM 0x86 OxDFD9 |[See OxDOOC, adr BDIM-1
READ Ox87 OxDBE2 |See OxDQOQE, adr BREAD-1
GR 0x88 OxF390 |[See 0xD01@, adr BGR-1
TEXT 0x89 OxF399 |See OxD@12, adr BTEXT-1
PR# Ox8A OxF1E5 |[See 0xD@14, adr BPR-1
IN# 0x8B OxF1DE |[See 0xD@16, adr BIN-1
CALL 0x8C OxF1D5 |See OxD@18, adr BCALL-1
PLOT 0x8D OxF225 |See OxD@Q1A, adr BCALL-1
HLIN Ox8E OxF232 |See OxD@1C, adr BHLIN-1
VLIN Ox8F OxF241 |See OxDQ1E, adr BVLIN-1
HGR2 0x90 OxF3D8 |See 0@xD020, adr BHGRZ2-1
HGR 0x91 OxF3E2 |[See OxD@22, adr BHGR-1

HCOLOR= 0x92 OxF6E9 |[See 0xD024, adr HCOLOR-1
HPLOT 0x93 OxFG6FE |[See 0xD026, adr BHPLOT-1
DRAW 0x94 OxF769 |See 0OxD028, adr BDRAW-1
XDRAW 0x95 OxF76F |[See OxDO2A, adr BXDRAW-1
HTAB 0x96 OxF7E7 |See OxD@2C, adr BHTAB-1
HOME 0x97 OxFC58 |[See OxD@2E, adr HOME-1
ROT= 0x98 OxF721 |[See 0xD@3@, adr BROT-1
SCALE= 0x99 OxF727 |See OxD0@32, adr BSCALE-1
SHLOAD Ox9A OxFF58 |[See 0xD034, adr IORTS-1; command removed
TRACE 0x9B OxF26D |[See 0xD036, adr BTRACE-1

NOTRACE 0x9C OxF26F |[See 0xD038, adr BNOTRACE-1
NORMAL 0x9D OxF273 |See OxDO3A, adr BNORMAL-1

INVERSE Ox9E OxF277 |See OxDO3C, adr BINVERSE-1
FLASH Ox9F OxF280 |See OxDO3E, adr BFLASH-1
COLOR= OxAQ OxF24F |See 0xD04@, adr BCOLOR-1
POP OxA1 OxDI96B |See OxD@42, adr BPOP-1
VTAB OxA2 OxF256 |See 0xD044, adr BVTAB-1
HIMEM: OxA3 OxF286 |[See OxD046, adr BHIMEM-1
LOMEM: OxA4 OxF2A6 |[See 0OxD048, adr BLOMEM-1

87

ONERR OxA5 OxF2CB |[See OxD0O4A, adr BONERR-1
RESUME 0OxA6 OxF318 |[See 0xD04C, adr BRESUME-1
RECALL OxA7 OxFF58 |[See OxDO4E, adr IORTS-1; command removed
STORE OxA8 OxFF58 |[See 0xD050, adr IORTS-1; command removed
SPEED= OxA9 OxF262 |[See 0xD@52, adr BSPEED-1
LET OxAA OxDA46 |[See 0OxDO54, adr BLET-1
GOTO OxAB OxD93E |See @xD@56, adr BGOTO-1
RUN OxAC @xD912 |See OxDO58, adr BRUN-1
IF OxAD 0xDI9C9 |[See OxDO5A, adr BIF-1
RESTORE OxAE 0xD849 |[See 0xDO5C, adr BRESTORE-1
& OxAF Ox03F5 |[See OxDOSE, adr USRAHAND-1; connected to USRAHAND
GOSUB 0xB0 0xD921 |See @xDO6@, adr BGOSUB-1
RETURN 0xB1 OxD96B |[See 0OxD062, adr BRETURN-1
REM 0xB2 OxDIODC |[See 0OxD0O64, adr BREM-1
STOP OxB3 OxD86E |See @xD066, adr BSTOP-1
ON OxB4 OxDIEC |See 0xDO68, adr BON-1
WAIT OxB5 OxE784 |[See OxDO6A, adr BWAIT-1
LOAD OxB6 @xD8DC |See @xDO6C, adr BLOAD-1
SAVE OxB7 OxFF58 |[See OxDO6E, adr IORTS-1; command removed
DEF OxB8 OxE313 |[See 0xDO70, adr BDEF-1
POKE 0xB9 OxE77B |[See OxDO72, adr BPOKE-1
PRINT OxBA OxDAD5 |[See 0xD@74, adr BPRINT-1
CONT OxBB OxD896 |See @xDO76, adr BCONT-1
LIST 0xBC OxD6AS |See OxDO78, adr BLIST-1
CLEAR OxBD OxD66A |[See OxDO7A, adr BCLEAR-1
GET OxBE OxDBAQ® |[See 0xDO7C, adr BGET-1
NEW OxBF 0xD649 |[See OxDO7E, adr BNEW-1
TAB(OxCO TK.TAB; referenced directly
TO OxC1 TK.TO; referenced directly
FN OxC2 TK.FN; referenced directly
SPC(0xC3 TK.SPC; referenced directly
THEN 0xC4 TK.THEN; referenced directly
AT OxC5 TK.AT; referenced directly
NOT OxC6 TK.NOT; referenced directly
STEP OxC7 TK.STEP; referenced directly
+ Ox(C8 OxE7C1 |TK.PLUS, OPLUS; TAG = 0x79; referenced directly
- 0xC9 OxE7AA |TK.MINUS, OMINUS; TAG = Ox79; referenced directly
* OxCA OxE982 |OMULT; TAG = Ox7B; used directly
/ 0x(CB OxEA69 |ODIVIDE; TAB = Ox7B; used directly
A OxCC OxEE97 |OPOWER; TAG = Ox7D; used directly
AND OxCD OxDF55 |[OAND; TAG = O0x50; used directly
OR OxCE OxDF4F |OOR; TAG = Ox46; used directly
> OxCF OxEED@® |TK.GRTR; TAG = Ox7F; referenced directly
= 0xD0o OxDE9B |TK.EQUAL; TAG = Ox7F; referenced directly
< 0xD1 OxDF65 |REL; TAG = Ox64; used directly
SGN 0xD2 OxEB9Q |[See 0OxDO8@, adr FSGN; start of FUNCTION1 statements
INT 0xD3 OxEC23 |See OxD0@82, adr FINT

88

ABS 0xD4 OXEBAF |See 0xD@84, adr FABS
USR 0xD5 0x000A |See 0xDO86, adr GOUSR
FRE @xD6 OxEZ2DE |See OxD@88, adr FFRE
SCRN(0xD7 OxDEF9 |See OxD@O8A, adr FSCREEN
PDL @xD8 OxDFCD |[See @0xD@8C, adr FPDL
POS 0xD9 OxE2FF |See OxD@8E, adr FPOS
SQR OxDA OxEE8D |See 0xDQ9@, adr FSQR
RND 0xDB OXEFAE |[See 0xD092, adr FRND
LOG @xDC OxEF3E |[See 0xD@94, adr FLOG
EXP @xDD OXEFQ9 |See 0xD@96, adr FEXP
COS OxDE OXEFEA |See 0xD@98, adr FCOS
SIN OxDF OXEFF1 |See @OxD@9A, adr FSIN
TAN OxEQ OxFO3A |See 0xD@9C, adr FTAN
ATN OxE1 OxFOOE |[See OxDQO9E, adr FATAN
PEEK OxE2 OxE764 |See OxDOA®, adr FPEEK
LEN OxE3 OxE6D6 |See OxDOA2, adr FLEN
STRS OxE4 OxE3C5 |See OxDOA4, adr FSTR
VAL OxE5 OxE7@7 |See OxDOAG, adr FVAL
ASC OxE6 OXEGE5 |[See OxDOA8, adr FASC
CHRS OxE7 OxE646 |See OxDOAA, adr FCHR
LEFTS OxE8 OxXEG5A |See OxDOAC, adr FLEFT; start of FUNCTIONZ statements
RIGHT$ OxE9 OxE686 |See OxDOAE, adr FRIGHT
MID$ OxEA OxE691 |See OxDOB@, adr FMID
PI OxEB OxEF48 |[See 0xDOB2, adr FPI; a BASIC statement
LN OxEC OxE941 |See OxDOB4, adr FLN; a FUNCTION1 statement

Table B.1. Modified Applesoft Statements

&9

90

Appendix C

The following table lists all of the internal Applesoft entry points for the unmodified version of Applesoft
under Old Addr and whether these entry points are the same or different in the modified version of

Applesoft under New Addr. If the entry point addresses are different, the Cng Flg column is checked.

Cng Flg | Old Addr |New Addr| Name Description
- OxCo00® | PROCVAR |Cornelis Bongers Garbage Collection Routine
- OxC64E | PROCSPCL |Cornelis Bongers Garbage Collection Routine
- 0xC670 SW16 |Sweet 16 Metaprocessor, revised original
- OxC7FF SW16 End of revised Sweet 16 Metaprocessor
= OxCA71 OPTBLC [65C@2 MNEML/MNEMR remapping
= OxCA7D OPTBLL [65C@2 MNEML/MNEMR remapping
0xD000Y 0xDOO® | BASADDR |BASIC statements addresses = #ADDR/2 + Ox80
0xD0O8Y OxD08@ | FNI1ADDR |FUNCTION statements addr = #ADDR/2 + 0x92
- 0xDOB2 FS3LN |LN routine address, statement number = OxEB
- 0xD0OB4 FS3PI |PI routine address, statement number = OxEC
v 0xDOB2 0xDOB6 | TAGADDR |OPERATOR statements addr
v 0xDOD0O OxDOD4 | BASNAME |Statement names in DCI format
v 0xD260 0xD25B MESGS |Error messages in mixed case in DCI format
v 0xD365 0xD362 | GTFORPNT |Used by FOR/NEXT, accelerated
0xD393 0xD393 BLTU |Block transfer utility
0xD3D6 0xD3D6 | CKSTKSIZ |Check STACK size
OxD3E3 OxD3E3 | CKSTRSIZ |Check memory size between arrays and strings
0xD410 0xD410 OM.ERR |Out of Memory error entry
0xD412 0xD412 PRTERR |Print selected error message
0xD431 0xD431 | PRLINUM |Print string at (A/Y) using INDEX; modified
0xD43C 0xD43C RESTART |Default DOS restart WARMADR entry ASROMWRM
OxD4F2 OxD4F2 ASENTER |Default DOS reset RESETADR entry ASROMRST
@xD52C 0xD52C INLIN |Read INPUT line, clear all MSBs; accelerated
v @xD553 - INCHR |Removed INCHR as unnecessary
0xD559 @xD559 | PARSINPT |Parse and tokenize the INPUT line
0xD56C 0xD56C PARSE |Get next input character
OxD61A OxD61A FNDLIN |Search for 1line number in (LINNUM)
0xD649 0xD649 BNEW |Implement the NEW statement
0xD64B 0xD64B SCRTCH |[Initialize for a new program environment
0xD665 0xD665 | SETPTRS |Default DOS RUN/CHAIN entry ASROMCLR
OxD66A OxD66A BCLEAR |Implement the CLEAR statement
OxD66C OxD66C CLEARC [Clear string area
0xD683 0xD683 | STKINIT |Start STACK at OxF8
0xD697 0xD697 | STXTPTR |Initialize TXTPTR to program beginning
OxD6A5 OxD6A5 BLIST |Implement the LIST statement
v 0xD72C 0xD758 GETCHR |Get next character using (DSCTMP)

91

0xD766 0xD766 BFOR Implement the FOR/NEXT/STEP statements
OxD7AF OxD7AF STEP STEP phrase in FOR statement
0xD7D2 0xD7D2 NEWSTT |[Default DOS RUN/CHAIN entry ASROMNEW
0xD8A5 0xD8@5 | DOTRACE |Enable or disable program tracing
0xD828 0xD828 | DOSTAMT |Execute a statement; BASADDR or FN1ADDR
0xD849 0xD849 | BRESTORE |Implement the RESTORE statement
0xD853 0xD853 | SETDAPTR |Set DATPTR to (A/Y)
0xD858 0xD858 | ISCNTLC |Handle control-C; accelerated
0xD865 @xD865 | ASROMERR |Default DOS error ERRORADR; accelerated
OxD86E OxD86E BSTOP |Implement the STOP statement
0xD870 0xD870 BEND Implement the END statement
0xD896 0xD896 BCONT |Implement the CONT statement
v 0xD8B0O - SAVE |Removed this statement
v - 0xD8B@ | DOHANDLR |Jump to HANDLERR
v @xD9C5 0xD8B3 PULL3A |Issue 3 pla instructions
v - 0OxD8BB RDBYTE |[Used by CXREAD to read audio waveform
0xD8C9 0xD8C9 BLOAD |Implement the LOAD statement
v - OxD8FF RD2BIT |Read two audio waveform transitions
v - 0xD902 RDBIT |Read one audio waveform transition
0xD912 0xD912 BRUN Implement the RUN statement
0xD921 0xD921 BGOSUB |Implement the GOSUB statement
OxD93E OxD93E BGOTO |Implement the GOTO statement
0xD955 @xD955 | ASROMSET |Default DOS RUN/CHAIN LINNUM initialization
0xD96B 0xD96B BPOP Implement the POP statement; mod
0xD96B 0xD96B | BRETURN |Implement the RETURN statement; mod
0xD97C 0xD97C US.ERR |Undefined Statement error entry
0xD995 0xD995 BDATA |Implement the DATA statement
0xD9A3 @xD9A3 | DATSCAN |Scan ahead to next “:” or End of Line (EOL)
0xD9C9 0xD9C9 BIF Implement the IF statement
@xD9DC @xDIDC BREM Implement the REM statement
OxDIEC OxDIEC BON Implement the ON statement
OxDAQC OxDAQC LINGET |Convert line number; repaired
0OxDA46 0OxDA46 BLET Implement LET statement
OxDA7B OxDA7B PUTSTR |Install string descriptor address
OxDAB7 OxDAB7 | COPYSTR |Copy string into Character String Pool
OxDACF OxDACF | PRSTRING |Print string and get last character
OxDAD5 OxDAD5 BPRINT |Implement the PRINT statement; accelerated
- OxDB32 UNARY2 |Complete UNARY processing
v - OxDB38 | LINEOUT |Print number
v OxDB3A 0xDB3B STROUT |[Print string at (A/Y)
v ©xDB3D ©OxDB3E STRPRT |Print string at (INDEX); accelerated
v OxDAFB @xDB50 PRTCR |Print return character; repaired
v @xDB57 @xDB53 OUTSPC |Print space character
v @xDB5A @xDB56 | OUTPROMT |Print prompt character ‘>’ and not ?’
v @xDB5C OxDB58 OUTCHR |Print character
v 0xDB71 OxDBG6F | INPUTERR |Also, READERR, ERRLINN, INPERR, RESPERR; mod
v @xDB7B @xDB79 | READERR |Gets the data location, not the data

92

v OxDB7F OxDB7D | ERRLINN |Save data location
v @OxDEC9 @OxDB81 | SY.ERR3 |Syntax error entry
0xDB86 0xDB86 INPERR |Pull data from the STACK
0xDB87 OxDB87 | RESPERR |Checks ONERR flag and handles both states
OxDBAQ OxDBAQ BGET Implement the GET statement
0xDBB2 0xDBB2 BINPUT |Implement the INPUT statement; accelerated
@xDBDC @xDBDC HEXTIN |[Print PROMPT and input line
OxDBE2 OxDBE2 BREAD |Implement the READ statement
OxDBEB OxDBEB | INPTLIST |Process input list
OxDBF1 OxDBF1 | INPTITEM |Process input item
0xDC2B OxDC2B | INSTART |Input the string or numeric data
0xDC99 0xDC99 | INPTFLG |Select INPUT or READ
0xDCAQ OxDCA@ | FINDATA |Locate TEXT data, colon, or End of Line
v OxDCCo @OxDCC7 | INPTDONE |No more data requested
OxDCDF OxDCDF MESG21 |Message ‘>Extra Ignored’, @0x@D
OxDCEF OxDCEF MESG22 |Message ‘>Reenter’, 0x@D
OxDCF9 OxDCF9 BNEXT |Implement the NEXT statement
v - OxDD4D | FPCOMPT3 |Initialize X-reg with T3GUARD for FPCOMP
v 0xDD67 0xDD64 FRMNUM |Evaluate expression
v OxDD6A 0xDD67 CHKNUM [Make sure FAC is a number
v @xDD6C 0xDD69 CHKSTR [Make sure FAC is a string
v @xDD6D OxDD6A CHKVAL [Verify FAC is correct number type
v 0xDD76 0xDD73 TM.ERR |[Type Mismatch error entry
v 0xDDOB 0xDD76 NF.ERR [NEXT without FOR error entry
@xDD7B @xDD7B FRMEVAL |Evaluate expression at (TXTPTR)
0xDDD7 0xDDD7 SAVOP |Call FREMEVAL recursively
@xDDFD OxDDFD | FRMRECUR |Use STACK/recursion to evaluate expression
OxDE10 OxDE10@ | FRMSTAK |Get FACSIGN and precedence value
OxDE15 OxDE15 | FRMSTAKZ |Pull return address, correctly increment
v OxDE20 OxDE23 | FRMSTAK3 |No RNDUP; push FACGUARD and FAC onto STACK
v OxDE35 OxDE32 NOTMATH |Setup the EXIT routine
v OxDE43 OxDE4@ | NOTMATH4 |Pull ARG, ARGGUARD, and ARGSIGN from STACK
OxDE6O OxDE6@ | FRMELMNT |Get array element number in expression
OxDE81 OxDE81 STRTXT |Get first element string
OxDE90 OxDE9@ | NOTFUNC |Evaluate NOT token
OxDE98 OxDE98 OEQUAL [Implement the EQUAL operator; accelerated
v OxDEA4 OxDEA7 FNFUNC |[Evaluate FN token; moved
v OxDEAB OxDEAE | SGNFUNC |Evaluate SGN token; accelerated
OxDEB2 OxDEB2 | PARENCHK |Check open parenthesis, evaluate expression
OxDEB8 OxDEB8 | CHKCLSP |Check for closed parenthesis
OxDEBB OxDEBB | CHKOPNP |Check for open parenthesis
OxDEBE OxDEBE CHKCOM |[Check for comma
OxDECQ OxDEC@ | SYNTXCHK |Syntax routine
OxDEC9 OxDEC9 SY.ERR |Syntax error entry
OxDECE OxDECE | MINUFUNC |Minus function entry
OxDEDQ OxDED@ | EQULFUNC |Equal function entry
OxDED5 OxDED5 | GETIVAL |Input the string or numeric data

93

OxDEF9 OxDEF9 | FSCREEN |Implement the SCRN(function
v OxDF@C OxDF@9 UNARY |[Modified to add LN and PI statements
OxDF4F OxDF4F OOR Handle OR operator
OxDF55 OxDF55 OAND Handle AND operator
OxDF5D OxDF5D FALSE |Return FAC = 0
OxDF60 OxDF60 TRUE Return FAC = 1
OxDF65 OxDF65 OLT Perform relational operations
OxDF7D OxDF7D STRCMP |String comparison function
OxDFBO OxDFBO NUMCMP [Number comparison result
@xDFCD @xDFCD FPDL Implement the PDL statement; modified
OxDFD9 0xDFD9 BDIM Implement the DIM statement
OxDFE3 OxDFE3 PTRGET |General variable scan, DIMFLG & SUBFLG; mod
OxEQ00Q 0OxEQ00Q BASIC |COLDSTRT entry point
OxEQ03 OxEQ03 BASICZ2 |[RESTART entry point
v OxEQ7D OxE@DA | CHKASCI |Set C-flag only for A-Z or clear; modified
v OxEQED OxEQE3 | PNTARVAL |Compute address for the first array value
v - OXEQFF | STRSETUP |Three byte patch for LEFT$/RIGHT$/MID$
v OxEQ9A OxE105 | IVALZERO |16-bit integer value for zero
v OxEQFE OxE107 FP80O® |16-bit integer value for 32768; corrected
v 0OxE102 OxE10C MAKINT |Evaluate expression, convert to integer
v OxE108 @xE112 | AYPOSINT |Convert positive number to integer
v OxE10C OxE116 AYINT |Convert to signed integer
v OXE11E OxE128 ARRAY |Locate array element, create array; modified
v 0xE196 OxE198 BS.ERR |[Bad Subscript error entry
v 0xE199 OxE19B IQ.ERR [Illegal Quantity error entry
OxE19E OxE19E RA.ERR |[ReDIM’d Array error entry, modified
v OxE1BC OxE1A1 OD.ERR |Out of Data error entry
OxE24B OxE24B | FINDELE |Find specified array element
OxEZ2AD OxE2AD | MULSUBS |Multiply array subscripts
OxE2DE OxE2DE FFRE Implement the FRE statement, calls GARBAG
OXE2F2 OxE2F2 | GIVAYFP |Float the signed integer in (A/Y)
OxEZ2FF OxEZ2FF FPOS Returns the current line position in (CH)
OxE301 0OxE301 SNGFLT |Float Y-register into FAC
OxE306 OxE306 | CHKIFDIR |Check MODE for direct or running
OxE30E OxE30E UF.ERR |[Undefined Function error entry
OxE313 OxE313 BDEF Implement the DEF statement
OxE341 OxE341 GETFNC [Common routine for DEF FN and FN statements
OxE354 OxE354 | CALLFNC |Process the FN statement
OxE3AF OxE3AF FNCDATA |Retrieve five bytes from STACK by (FUNCNAM)
OxE3C5 OxE3C5 FSTR |Implement the STR$ statement; modified
v OxE3D5 OxE3D0O STRINI |[Get space for string descriptor in (FAC)
v @xE3DD OxE3D8 STRSPA |Get space for string descriptor in (X/Y)
v OxE3E7 OxE3E2 STRLIT |Build a string descriptor in (A/Y)
v OxE42A OxE426 PUTNEW |Store descriptor as a temporary descriptor
v OxE430 0OxE449 FC.ERR |Formula too Complex error entry
v OxE474 OxE44C | OM.ERR3 |Out of Memory error entry
v OxE452 OxE454 | GETSSPC |Make string space in Character String Pool

94

OxE484 OxE484 GARBAG |Implementation of C. Bongers GARBAG routine
OxE597 OxE597 | CAT2STR |Concatenate two strings
v OxE5B2 OxE5CF SL.ERR |String too Long error entry
OxE5D4 OxE5D4 MOVINS |Get string descriptor using (STRING1)
OxESE2 OXESE2 MOVSTR [Move string at (X/Y) having length (A)
OxESFD OxESFD FRESTR |Release descriptor
0OxE600 OxE600 FREFAC |Release temporary string
OxEC04 OxEC04 FRETMP |Release (A/Y) string
OxE635 OxE635 FRETMS |Free temporary descriptor
OxE646 0xE646 FCHR |Implement the CHR$ statement
OXEG5A OXEG5A FLEFT |Implement the LEFT$ statement
OxE686 OxE686 FRIGHT |Implement the RIGHT$ statement
0xE691 0xE691 FMID |Implement the MID$ statement, check for 0
v OxE6B9 OxEGBC | STRSET2 |Continuation of STRSETUP patch
OxE6D6 OxE6D6 FLEN Implement the LEN statement
OxE6DC OxE6DC | GETSTRLN |Free string if temporary, return length
OxEGES OxEGES FASC Implement the ASC statement
OxEGF5 OxEGF5 | GETBYTC |Scan to next character and convert to byte
OxEGF8 OXEGF8 GETBYT |[Evaluate expression at (TXTPTR), return byte
OxEGFB OxEGFB | CONVINT |Convert (FAC) to single byte in X-register
OxE7Q7 OxE7Q7 FVAL Implement the VAL statement
OxE73D OxE73D STRCOPY |Copy string from (STRING2) to (TXTPTR)
OxE746 OxE746 | GETASNUM |Evaluate expression for 16-bit value
OxE74C OxE74C | COMBYTE |Evaluate expression for 8-bit value
OxE752 @xE752 | GETADDR |Convert (FAC) to a 16-bit value
OxE764 OxE764 FPEEK |Implement the PEEK statement
OxE77B OxE77B BPOKE |Implement the POKE statement
OxE784 OxE784 BWAIT |Implement the WAIT statement
v OxE7AQ - FADDH |Removed add 0.5 to FAC function
v - OxE7A1 FPPI |FP value for PI with guard byte value
OxE7A7 OxE7A7 FSUB Internal entry for subtraction, load guard
OxE7AA OxE7AA OMINUS |[Implement the — statement; modification
OxE7BE OxE7BE FADD |Internal entry for addition, load guard byte
OxE7C1 OxE7C1 OPLUS |[Implement the + statement; modification
v OxE829 OxE81D | COMPFAC1 |[Normalize value in FAC
v OxE82E OxE822 | NORMFAC1 |Shift bytes left in FAC, FACGUARD = @
v OxE84E OxE842 | ZEROFAC |Clear FACEXP and FACSIGN to zero
v OxE874 OxE868 | NORMFAC2 |Shift FAC left and increment A-reg
v OxE89E 0OxE892 | COMPFAC2 |Compliment FAC and then its mantissa
v OxE8C6 OxE8BA | INCMANT |Increment the FAC mantissa
v OxE8D5 OxE8C9 OF .ERR |Overflow error entry
v OxE8FO OxE8CE | SHFTBYT1 |Shift bytes to the right into FACGUARD
v 0xE907 OxE8FC | SHFTBITS |Shift bits to the right into FACGUARD
v - 0OxE908 PDL2 Ensure argument is 0:3 before call to PREAD
v - OxE913 FPLOGE |FP value for LOG(e) to convert LN -> LOG
v 0xE92D OxE918 | FPSQRO.5 |FP value for the square root of 0.5
v 0xE932 OxE91D | FPSQR2.0 |FP value for the square root of 2.0

95

v 0xE937 0xE922 FPN@.5 |FP value for - 0.5

v OxE93C OxE827 FPLN2 |FP value for LN(2)

v OxE918 OxE92C | POLY.LOG |Coefficients to calculate natural log LN
OxE941 OxE9%41 FLN Implement the LN statement
OxE97F OxE97F FMULT |Internal entry for multiplication, use guard
OxE982 OxE982 OMULT |[Implement the * statement; modification
OxE9E3 OxE9E3 LOADARG |Load ARG register from (A/Y), ARGGUARD = 0

v OxEAQE OxEA1Q@ | PROCEXP |Process exponents; modified

v OxEAZ2B OxEA2E | ZEROFERR |Check for zero or overflow error

v OxEA36 OxEA32 | OF.ERR2 |Overflow error entry

v OxEAE1 OxEA35 DZ.ERR |[Division by Zero error entry

v OxEAS5 OxEA3A | MULFAC10 |Multiply FAC by 10, no RNDUP, copy guards

v OxEA50Q OxEA50Q FP10.0 |FP value for 10.0

v OxEASE OxEAS5 | DIVFAC10Q |Divide FAC by 1@, no RNDUP; modified
OxEAG6 OxEAG6 FDIV |Internal entry for division, use guard bytes
OxEAG9 OxEA69 | ODIVIDE |Implement the / statement; modification

v OxFQ70 OxEAD7 FP.25 |FP value for 0.25

v OxED17 OxEADC FP1.0QE9Q |FP value for 1.0QE+09
OxEAEG OxEAE6 | COPYM2F |Copy MULMANT to FACMANT; call NORMFAC1
OxEAF9 OxEAF9 LOADFAC |Load FAC register from (A/Y), FACGUARD = 0
OxEB1E OxEB1E | COPYF2T2 |Copy the FAC register to the TEMPZ2 register
OxEB21 OxEB21 | COPYF2T1 |Copy the FAC register to the TEMP1 register
OxEB27 OxEB27 | COPYF2FR |Copy the FAC register to FORPNT
OxEB2B OxEB2B | COPYFAC |Copy the FAC register to (X/Y), use RNDUP
OxEB53 OxEB53 | COPYAZ2F |Copy ARG to the FAC register, copy guards
OxEB63 OxEB63 | COPYF2A |Copy FAC to the ARG register, copy guards

v OxEB72 OxEB70 RNDUP [Increment FAC if FACGUARD MSB set; modified
OxEB82 OxEB82 | SIGNCHK |Test FAC for negative, zero, positive
OxEB90 OxEB90 FSGN Implement the SGN statement
OxFB93 OxEB93 FLOAT |Convert (A) to signed value of -128 to 127
OxEBAF OxEBAF FABS Implement the ABS statement

v OxEBB2 OxEBB5 FPCOMP |Compare FAC with (A/Y), use T3GUARD; mod
OxEBF2 OxEBF2 FP2INT |Convert FAC to a 16-bit integer
OxEC23 OxEC23 FINT |Convert FAC to integer, then refloat to FP
OxEC40 OxEC40 | CLRMANT |Clear FAC mantissa
OxEC4A OxEC4A GETINT |[Convert numerical string to FP in FAC; mod

v OxECD5 OxECF6 | ADDZ2FAC |Add value in (A) to FAC; modified

v OxED19 OxEDQA | PRTMSG19 |Print ¢ in ¢, 1line number, CR; modified

v OxED24 OxED18 | LINEPRT |Print (X/A) as a 1l6-bit integer

v OxD358 OxED25 MESG19 |asc ¢ in ¢

v OxEDOA OxED2A | FP9.9E7 |FP value for 9.9EQ7

v OxEDOQF OxED2F | FP9.9E8 |FP value for 9.9E0Q8
OxED34 OxED34 FPOUT |Print FAC as numerical string in STACK; mod

v OxEEGC OxEE5C | FPDECTBL |Hex to decimal conversion table
OxEE8D OxEE8D FSQR |Implement the SQR statement; modified
OxEE97 OxEE97 OPOWER |Implement the A statement; modified
OxEEDQ OxEEDQ 0GT Implement the > statement; also is NEGFAC

96

OxEEDB OxEEDB | FPINVLNZ2 |FP value for 1/LN(2)
OxEEEQ OxEEEQ | POLY.EXP |Coefficients to calculate exponential
v 0xE916 OxEFQ4 FP1.0 |FP value for 1.0
OxEFQ9 OxEFQ9 FEXP |Implement the EXP statement; modified
v OxEF72 OxEF31 | POLYNOML |Save (A/Y) to (COEFPTR); moved
v - OxEF3E FLOG |Convert natural log LN to base-10 log LOG
v - OxEF48 FPI Load FAC and FACGUARD with the value of PI
v - OxEF57 | POLYSIN |Load (A/Y) with address of POLY.SIN coefs.
v OxEF5C OxEF5B | POLYPROC |0dd polynomial processing, no RNDUP
v OxEF76 OxEF71 | POLYNOM |Normal polynomial processing; modified
OxEFAG OXEFAG | RANDVAL1 |Integer value A = @x12B9BOA5; modified
OxEFAA OxEFAA | RANDVALZ |Integer value C = @x361962EA; modified
OxEFAE OxEFAE FRND |Implement the RND statement; modified
OxEFEA OxEFEA FCOS Implement the COS statement
OxEFF1 OxEFF1 FSIN |Implement the SIN statement; modified
OxFO3A OxFO3A FTAN |Implement the TAN statement; modified
v 0OxF066 OxF@5C | FPIDIV2 |FP value for PI/2
v OxEEG7 0xFO61 FP@.5 |FP value for 0.5
v OxFQ75 OxFO66 | POLY.SIN |Coefficients to calculate SINE; modified
v 0xF094 - UNREFBYT |Unreferenced bytes for MICROSOFT! Backwards
v OxFQ6B OxF@99 | FPIMULZ2 |FP value for 2*PI
OxFO9E OxFO9E FATAN |Implement the ATN statement; accelerated
v OxFOCE OxFOCC | POLY.ATN |Coefficients to calculate ARCTAN
OxF10B OxF1@9 | PGZCODE |Routines that are copied to page-zero
0xB1 0xB1 CHRGET |Increment TXTPTR and read ASCII character
OxB7 OxB7 CHRGOT |[Recall previous ASCII value read
0x(C9 0x(C9 FPRAND |Random number generator seed
v OxF128 @xF125 | COLDSTRT |BASIC enters to setup pointers and vectors
v - OxF1B1 | FRMSTAK4 |Continuation of FRMSTAK3
v - OxF1BA | COPYF2T3 |Copy the FAC register to the TEMP3 register
v - @xF1C5 | INCCOEF |Increment the coefficient pointer
v - @xF1CC | CLEARMUL |Clear MULMANT to 0x00Q for FMULT
OxF1D5 OxF1D5 BCALL |Implement the CALL statement
OxF1DE OxF1DE BIN Implement the IN# statement
OxF1ES5 OxF1ES5 BPR Implement the PR# statement
OxF1EC OxF1EC | PLOTFNS |Get LORES coordinates for H2 and V2 < 48
0OxF209 OxF209 | LINCOOR |Get A,B at C values for HLIN and VLIN
OxF225 OxF225 BPLOT |Implement the PLOT statement
OxF232 OxF232 BHLIN |Implement the HLIN statement
OxF241 0OxF241 BVLIN |Implement the VLIN statement
OxF24F OxF24F BCOLOR |Implement the COLOR= statement
OxF256 OxF256 BVTAB |Implement the VTAB statement
OxF262 OxF262 BSPEED |Implement the SPEED= statement; modified
OxF26D 0OxF26D BTRACE |Implement the TRACE statement
OxF26F OxF26F | BNOTRACE |Implement the NOTRACE statement
OxF273 OxF273 | BNORMAL |Implement the NORMAL statement
OxF277 OxF277 | BINVERSE |Implement the INVERSE statement

97

OxF280 OxF280 BFLASH |Implement the FLASH statement
OxF286 OxF286 BHIMEM |Implement the HIMEM: statement
OxF2A6 OxF2A6 BLOMEM |Implement the LOMEM: statement
OxF2(CB OxF2(CB BONERR |Implement the ONERR statement
OxF2E9 @xF2E9 | HANDLERR |Handles an active ONERR GOTO for errors
OxF318 OxF318 | BRESUME |Implement the RESUME statement
0OxF331 0OxF331 BDEL Implement the DEL statement
OxF390 OxF390 BGR Implement the GR statement; accelerated
OxF399 OxF399 BTEXT |Implement the TEXT statement; accelerated
v OxF39F - STORE |Removed this statement
v - OxF39C CXREAD |[Originally at @xC5D1 to read audio waveforms
v @xF3BC - RECALL |[Removed this statement
OxF3D8 OxF3D8 BHGR2 |Implement the HGRZ2 statement; modified
OxF3E2 OxF3E2 BHGR |[Implement the HGR statement; modified
v OxF3F2 OxF3EC | CLRHIRES |Clear and set selected HIRES screen; mod
v - OxF3EE | SETHIRES |Set selected HIRES screen to a value; mod
OxF411 OxF411 HPOSN |[Set the HIRES cursor position
OxF457 OxF457 HRPLOT |[Plot a HIRES dot on the screen
OxF465 OxF465 | HRMOVLF |Move HIRES cursor left
OxF47E OxF47E | COLSHIFT |If odd screen byte, inverse COLBITS
OxF48A OxF48A | HRMOVRT |Move HIRES cursor right
v = OxF49C | DRAWHDR |Separates an XDRAW or a DRAW operation; new
v OxF457 OxF4A6 | XDRAWIT |XDRAW one pixel
v OxF4B3 OxF4B8 DRAWIT |DRAW one pixel
v OxF4D5 OxF4D1 | HRMOVUP |Move HIRES cursor up
v OxF505 OxF501 | HRMOVDN |Move HIRES cursor down
v OxF530 - HLINRL |[Removed this routine; routine never called
v OxF5B8 OxF430 | BITABLE |Used to initialize the COLOR variable
OxF53A OxF53A HLIN Draw line from last plotted point; mod
v OxF5BA OxF5B3 | ROTATBL |Rotational cosine table every 5.625°; mod
v OxF72D @xF5C7 | DRAWCMD |The DRAWCMD routine (DRWPNT) for DRAWSHP
v OxF5CB - HFIND |[Removed this routine; routine never called
v OxF601 - DRAW@ |Removed this routine; routine never called
v 0OxF605 0xF600 - The DRAWSHP routine for DRAW, now DRAWCMD
v 0OxF661 0xF600 - The DRAWSHP routine for XDRAW, now DRAWCMD
v @xF65D - XDRAWQ |[Removed this routine; routine never called
v - OxF666 SQR2 |Continuation of FSQR
v - OxF58E | COPYA2F3 |Continuation of COPYA2F
v - 0xF693 | COPYF2A2 |Continuation of COPYF2A
v - OxF6A8 | COPYT32A |This is the COPYT32A routine; uses LOADARG
OxF6B9 OxF6B9 GETFNS |Get HIRES plotting coordinates (X/Y) and (A)
OxF6E9 OxF6E9 | BHCOLOR |Implement the HCOLOR= statement
OxFoF6 OxF6F6 | HRCOLTBL |Used to initialize the HRCOLOR variable
OxFoFE OxFoFE BHPLOT |Implement the HPLOT statement
OxF721 OxF721 BROT Implement the ROT= statement
OxF727 OxF727 BSCALE |Implement the SCALE= statement
v - OxF72D RND2 [Continuation of the FRND routine

98

OxF769 OxF769 BDRAW |Implement the DRAW statement
OxF76F OxF76F BXDRAW |Implement the XDRAW statement
v - OxF775 RND3 Continuation of the RND2 routine
v OxF775 - SHLOAD |Removed this statement
v - OxF791 TITLE |“Apple //e+” in upper ASCII
v - OxF79B PARSIEX |Modifications for 8@ columns and lower case
v OxF7BC - TAPEPNT |Removed this routine
v - OxF7BE LISTEX |Modifications for LIST in 80 columns
v - OxF7Co | PRTCREX |Modifications for PRINT in 8@ columns
v OxF7D9 - GETARYPT |Removed this routine
OxF7E7 OxF7E7 BHTAB |Implement the HTAB statement; 40/80 columns

Table C.1. Applesoft and Modified Applesoft Entry Points

99

100

Appendix D

A great deal of time and effort was put into an on-going project in order to modify DOS 3.3 so that a Binary
file could be loaded directly into memory when I first began working at Sierra On-Line in late 1983. This
effort ultimately produced a modified DOS BLOAD command that utilized additional keywords that would
provide the necessary parameters in order to achieve its accelerated processing rate. That accelerated
processing rate could be achieved by reading the data in each file sector and saving that sector data directly
to memory one page at a time. Unfortunately, I have no further information on the list of additional
keywords that were utilized and the extent of the modifications that went into DOS 3.3, the DOS BLOAD
command, and the changes that were made to the Valid Keyword table. Binary files could be loaded into
memory in a surprisingly accelerated rate by this uniquely modified DOS 3.3. After I redesigned the DOS
HELP command for DOS 4.5.06H as I thoroughly explain in DOS 4.5 Volume and File Disk Management
System Second Edition, 1 was able to include a number of additional features into that DOS. The DOS
SLOAD and SSAVE commands were two DOS commands that I had available space to include. The DOS
SLOAD command is very competitive to that modified Sierra On-Line BLOAD command and it is able to read
into memory a Special Binary file in a surprisingly accelerated rate. The Special Binary file does not utilize
the first four bytes in its first data sector for its memory load address and for its length in bytes, and those
four bytes are simply not included. The memory load address and the length in bytes for a Special Binary
file must already be known in order to write this file onto a disk volume or to read this file from a disk
volume. Since I began developing the SHAPE management software and exploring the Applesoft routines
that specifically manage SHAPE Tables, I have reconsidered the usefulness of the DOS SLOAD and SSAVE
commands. Furthermore, removing all of the routines that depend on the cassette input and output data
ports except for the LOAD and the READ Applesoft statements leaves the demand for developing a DOS
SHLOAD command in order to replace the excised Applesoft SHLOAD statement as well as developing a
companion DOS SHSAVE command. In view of these changes to the DOS 4.5.06H command repertoire
and in the creation of the new DOS 4.5.08H repertoire that replace the DOS SLOAD and SSAVE commands,
the following describes the new SHLOAD and SHSAVE Binary file commands that fully support the
management of Applesoft SHAPE Tables.

Command Command Syntax
BLOAD f [,Ss][,bd][,vv]l[,Aa][,R]
BRUN f [,Ss][,Dd][,Vv][,Aa]
BSAVE f [,Ss][,Dd][,vv]1[,Aa][,B][,L1][,R[1]]
LLOAD f [,Ss][,Dbd][,vv]l[,Aa][,R]
LSAVE f [,Ss][,Dd][,vv]1[,Aa][,B][,L1][,R[1]]
SLOAD f [,Ss][,bd][,vv]l[,Aal[,B][,R]
SSAVE f [,Ss][,Dd][,vv]1[,Aa][,B][,L1][,R[1]]

Table D.1. Binary File Commands in DOS 4.5.08H

The Binary File commands in the DOS 4.5.08H command repertoire consist of those commands that
manage the general operation of Binary or assembly language files. The DOS BLOAD command loads a

101

Binary file into memory from a disk volume. The DOS BRUN command loads a Binary file into memory
from a disk volume before it begins processing the instructions that now reside in memory. The DOS
BSAVE command saves the Binary program that currently resides in memory into a file in a disk volume.
The DOS LLOAD command loads a Lisa Binary file into memory from a disk volume. The DOS LSAVE
command saves the Lisa Binary program that currently resides in memory into a file in a disk volume. The
DOS SHLOAD command loads a SHAPE Table Binary file into memory from a disk volume. The DOS
SHSAVE command saves a SHAPE Table Binary structure that currently resides in memory into a file in a
disk volume.

The syntax of the Binary File commands for DOS 4.5.08H is shown in Table D.1. All of the Binary File
commands are permitted to be used from within an Applesoft program or an assembly language routine as
well as on the Apple Command Line.

SHLOAD Command

SHLOAD f [,Ss]1[,Dd]L,Vv]L,Aall,B]L,R]

Example: SHLOAD DRAW SHAPE.S,A$B000
SHLOAD DRAW SHAPE.S,A$B000,B
SHLOAD DRAW SHAPE.S,R

This command is not available in DOS 3.3 for Binary File commands and this command was initially
developed for DOS 4.5.08H. The DOS SHLOAD command reads into memory the SHAPE Table Binary file
f in the specified volume at memory address a if the A keyword is included. If the A keyword is not included
with the DOS SHLOAD command, the SHAPE Table Binary file f is read into memory at the address the file
was originally saved or last saved. SHAPE Table Binary files are Special Binary file Type 0x08.

The DOS SHLOAD command copies the 16-bit memory load address that resides in ADRVAL into the page-
zero variable HRSHPTBL at OXE8:E9 in the same way that it is copied by the Applesoft handler for the
Applesoft SHLOAD statement. The Applesoft handler for the Applesoft SHLOAD statement also copies the
memory load address to the page-zero variables FRETOP at @x6F:7@ and to HIMEM at @x73:74. Only if the
B keyword is included with the DOS SHLOAD command will DOS copy the memory load address that is in
ADRVAL to FRETOP and to HIMEM.

If the R keyword is included with the DOS SHLOAD command, the memory load address and the number of
bytes that are read into memory are displayed. A SHAPE Table Binary file utilizes the first four bytes in its
first data sector for its memory load address and for its length in bytes where both pair of bytes are in Lo/Hi
byte order. Therefore, when the A keyword is not included with the DOS SHLOAD command, the memory
load address information is obtained from the first pair of bytes in its first data sector. The DOS SHLOAD
handler always obtains the number of bytes to read into memory from the second pair of bytes in its first
data sector. The Applesoft SHLOAD statement is removed from the modified Applesoft.

102

SHSAVE Command

SHSAVE f [,Ss]1L[,Dd]L,Vv]L,Aall,B]IL,L11L,R[1]1]

Example: ~ SHSAVE DRAW SHAPE.S
SHSAVE DRAW SHAPE.S,B
SHSAVE DRAW SHAPE.S,R
SHSAVE DRAW SHAPE.S,A$B000@,L$34,R1

This command is not available in DOS 3.3 for Binary File commands and this command was initially
developed for DOS 4.5.08H. The DOS SHSAVE command saves the SHAPE Table Binary structure to file £
on the specified volume using the memory address a and the length 1 in bytes if the A and the L keywords
are included, respectively. These two keywords are optional in DOS 4.5, but if they are included, both
keyword values are required. If the A and the L keywords are not included, the address a and the length 1
values of the previous SHLOAD or SHSAVE command are utilized. SHAPE Table Binary files are Special
Binary file Type 0x08.

The B keyword can be used with the DOS SHSAVE command in order to implement the File Delete/File
Save strategy. That is, the SHAPE Table Binary file f is deleted from the volume and then saved to the same
volume in order to ensure that the TSL sector(s) of file f contain only those Track/Sector entry pairs that
are required and utilized by the file.

If the R keyword is included with the DOS SHSAVE command, the memory save address and the number of
bytes that are written to the specified volume are displayed. If a non-zero R keyword is included with the
DOS SHSAVE command, the number of verified sectors is also displayed with the memory address and the
file size information. If CONFIG Bit 1 is set, the SHAPE Table Binary file f is not verified after it is saved
to the specified volume. The VALSCNFG variable can be cleared by using the R keyword with the DOS
CONFIG command followed by a comma. The features of the newly designed DOS SHSAVE command were
never included in the original Applesoft.

103

104

