
SHAPE Table Management in an Apple][Computer

Historical Introduction to Applesoft Basic

Apple Computer licensed the Microsoft 6502 BASIC, a popular language even before Pascal became
available, in order for Apple to create the Applesoft BASIC interpreter. Microsoft was producing BASIC
interpreters for nearly every microprocessor that was being produced in 1975 and 1976. It was calculating
on licensing or selling their BASIC interpreter to any company who built a computer around any of those
early microprocessors. Richard Weiland, Bill Gates, and Monte Davidoff at Microsoft ported their Intel
8080 BASIC in mid-1976 to the new 6502 microprocessor even though there were no computers being
marketed at that time that utilized that particular microprocessor. The tool that these early entrepreneurs
used for this software port was a 6800 microprocessor simulator that was written by Microsoft’s first
employee, Marc McDonald. McDonald was able to accomplish this software port because the 6800
microprocessor had an instruction set that was very similar to the instruction set of the 6502 microprocessor.
In August, 1977, Apple made a $10,500 payment to Microsoft which was the first half of a flat-fee license
that Apple and Microsoft were able to negotiate. Microsoft would typically license its BASIC on a royalty
basis and Microsoft would normally be paid a set fee for every copy of BASIC that was utilized. If this had
occurred, a fee would be paid for every computer that contained the Microsoft 6502 BASIC interpreter that
Apple sold. The fact that Microsoft was willing to concede and allow Apple to license their 6502 BASIC
interpreter on a flat-fee basis is a reflection of the financial straits that Microsoft was currently facing.

The Microsoft 6502 BASIC interpreter that Apple licensed was Version 1.1. When Apple received the
interpreter, it required the work of several talented individuals in order to correct errors in the original
source code and to incorporate unique LORES and HIRES graphic commands. Randy Wigginton and Cliff
Huston were both instrumental in this effort. The first manual for Applesoft I was published in November,
1977, and the second manual for Applesoft II, the final version, was published nearly a year later in August,
1978. Applesoft II contained further code changes that had already been incorporated into Version 2 of the
Microsoft 6502 BASIC interpreter. This final version of the Applesoft interpreter has been virtually
unchanged in the Apple][computer even as this computer evolved from the Apple][Plus, the Apple //e,
and the Apple //c. Beginning with the Apple //c, however, slight modifications were made to the interpreter
in order for it to accept the input of statements in lowercase. Some of these modifications also included the
addition of 80-column support and all of these modifications were folded into the Applesoft interpreter that
was included in the Enhanced Apple //e Applesoft ROM. The eight-year license that Apple purchased for
the Microsoft 6502 BASIC interpreter expired in 1985. In order to obtain a second eight-year license for
this interpreter, Apple simply gave their MacBASIC software code to Microsoft in exchanged. This second
and final license for the Microsoft 6502 BASIC interpreter expired in 1993.

Introduction to Applesoft Basic Source Code

Apple Computer has yet to publish the source code for any version of Applesoft, either Applesoft I or
Applesoft II. Several publishers such as the Apple Orchard and Call A.P.P.L.E. have reprinted Applesoft
Internals by John Crossley. The Sander-Cederlof DocuMentor has also been used in order to provide,
perhaps, the most complete source code and documentation of Applesoft internals. Mr. Sander-Cederlof
even includes his own personal comments within this documentation which identifies coding errors,
routines that contain dangerous code under specific conditions, and routines that can utilize improvable

2

code or replacement code. It was many, many years after I had already sourced the Applesoft interpreter
in my Enhanced Apple //e ROM when I came across the S-C DocuMentor for Applesoft. Therefore, I have
the benefit of both my own personal investigation into the Applesoft interpreter and the investigation of the
Applesoft interpreter by Mr. Sander-Cederlof. I have taken the source code comments by Mr. Sander-
Cederlof in his documentation under advisement and I have modified my version of the Applesoft
interpreter source code for the Enhanced Apple //e accordingly. Of course, the source code modifications
that were suggested by Mr. Sander-Cederlof were only a few among the total number of improvements that
I have incorporated into my personal version of the Applesoft interpreter. Some of my Applesoft interpreter
source code modifications that pertain to floating-point and complex numbers are thoroughly documented
in the paper I published entitled Using Complex Numbers in an Apple][Computer.

Page Topic Description
0xC0 I/O Memory, video, and slot card management soft switches.

0xC1-0xC2 Monitor Support ROM Monitor input and 40/80-column output support routines.
0xC3 Video Output Claims 0xC8:CF space; cannot be used by 0xF8:FF routines.
0xC4 Interrupt Handler Apple //e configuration is captured; the interrupt handled; system is restored.
0xC5 Step and Trace Mini-assembler routines.

0xC6-0xC7 Garbage; Sweet 16 Several garbage collection routines and Sweet 16 metaprocessor.
0xC8-0xCE 40/80 column handlers Routines to display 40 and 80 columns.

0xCF Step and Trace Mini-assembler routines.
0xD0-0xD3 Addresses and Names Applesoft statement addresses, names, and error messages.
0xD4-0xD6 Interpreter Applesoft interpreter, restart, parser, tokenizer, memory management
0xD7-0xD8 Routines FOR, TRACE, RESTORE, STOP, END, CONT, LOAD, RUN routines
0xD9-0xDA Routines RUN, GOSUB, GOTO, RETURN, POP, DATA, REM, LET, PRINT routines
0xDB-0xDF Routines GET, INPUT, READ, NEXT, PDL, DIM routines
0xE0-0xE6 Routines POS, DEF, STR, GARBAG, CHR, LEFT, RIGHT, MID, LEN, ASC routines
0xE7-0xEB Routines VAL, PEEK, POKE, WAIT, SUB, ADD, LOG, LN, MULT, DIV, SGN routines
0xEC-0xEF Routines ABS, INT, FPOUT, SQR, POWER, EXP, RND, COS, SIN routines
0xF0-0xF1 Routines TAN, ATAN, CHRGET, COLDSTRT, CALL, IN, PR routines

0xF2 Routines PLOT, HLIN, VLIN, COLOR, VTAB, SPEED, TRACE, NOTRACE routines
0xF3 Routines INVERSE, FLASH, HIMEM, LOMEM, ONERR, RESUME, DEL, GR routines
0xF4 Routines TEXT, READ, HGR2, HGR, POSN, HPLOT routines

0xF5-0xF6 Routines HLIN, DRAW, XDRAW routines
0xF7 Routines HCOLOR, HPLOT, ROT, SCALE, TITLE, 40/80 column patches, HTAB routine

0xF8-0xFF ROM Monitor Modified ROM Monitor that supports 40/80 column display routines.

Table 1. General Layout of Applesoft ROM Routines

The general layout of the Applesoft interpreter is shown in Table 1. The COLDSTRT routine shown in
boldface in Table 1 appears to complete Version 1.1 that Apple purchased from Microsoft as Applesoft I,
the 6502 BASIC interpreter. The Applesoft statements that follow the COLDSTRT routine begin in the 0xF2
page of the ROM and they handle the unique LORES and HIRES graphic commands which were provided
by Randy Wigginton and Cliff Huston. The Applesoft interpreter that was provided in the Enhanced Apple
//e uses the last half of page 0xF7 of the ROM for patches that support 40 and 80-column displays and to

3

provide a correctly functioning Applesoft HTAB statement. I have not changed the entry locations for any
Applesoft statement. What I have changed are the routines that are used by their Applesoft handlers.

Deficiencies in Applesoft Mathematical Routines and Functions

Applesoft mathematical routines and functions that operate on very small floating-point numbers can
become problematic. These routines and functions may exhibit non-commutative addition, non-
commutative multiplication, non-reflexive equality evaluation, irregularities of the exponent when the
exponent is very small or very large, errors in the multiplication algorithm, errors in the binary to decimal
conversion, and significant errors in the trigonometric functions that involve very small arguments. Some
intermediate arguments depend on a full 40-bit significand since these arguments utilize a guard byte. On
the other hand, some intermediate arguments are rounded and they are pushed onto the stack using only
their 32-bit significand. Rounding consists of simply inspecting the most significant bit of the guard byte
and if that bit is set, the thirty-two-bit significand is incremented. When addition, subtraction, or
multiplication is initiated, only one operand uses a full forty-bit significand and the other operand uses a
thirty-two-bit significand. In division, only the quotient has any extra significance having two additional
bits. Sticky bits are not utilized in Applesoft mathematical routines and functions in order to assist in
making numerical rounding decisions. Since the cosine and the tangent trigonometric functions depend
solely on the sine function, they are equally flawed if not more so. The Applesoft mathematical routines
and functions can provide acceptable results if very small or very large arguments are avoided and if the
number of significant digits is limited to only what is acceptable given the total range of the floating-point
numerical values for all Applesoft arguments.

Applesoft arithmetic also contains known irregularities that were purposefully implemented, some in which
the user would not be expected to anticipate. These irregularities occur because certain decisions were
made while designing the arithmetic algorithms. Other irregularities may also occur unintentionally
because of coding errors or software mistakes. Non-commutative addition means that different results are
obtained when the positions of the variables being added are exchanged. Non-reflexive equality means that
different evaluations are obtained when the positions of the variables being compared are exchanged. When
the exponent of a very small number is equal to -128, for example, a positive quotient will be obtained
without regard to the sign of the divisor or the sign of the dividend. When two consecutive variables are
nearly zero and they are multiplied, their product is shifted to the right one extra bit. Non-communicative
multiplication issues are also confounded by decimal to binary and binary to decimal conversions where an
identity might be expected but cannot be obtained. Unless a Taylor series is utilized that has at least thirteen
to fifteen iterations, the Applesoft sine function exhibits extremely poor accuracy for arguments that are
near zero. And, the Applesoft sine function generates zero for all arguments that are greater than 0.5 ∗
10!". Apparently, the flaw in the Applesoft sine function for an argument that is very large in value is
due to the sine argument reduction algorithm. And, as previously mentioned, the cosine and the tangent
trigonometric functions are equally flawed since they are obtained by means of trigonometric identities that
are solely based on the Applesoft sine function. Therefore, it is vital that the engineer or the mathematician
is aware of all of the numerical limitations of the algorithms that are implemented in Applesoft and how
each function can affect the accuracy of Applesoft arithmetic. And, the engineer or the mathematician must
accommodate all of their complex floating-point variables, arrays, determinants, and inverse arrays for these
Applesoft arithmetic irregularities.

4

Applesoft Random Number Generator

The random number generator that is utilized in the Applesoft ROM is faulty, and an article RND is Fatally
Flawed was submitted to Call A.P.P.L.E. and printed in the January, 1983, issue on pages 29-34. This
article also presents an alternative routine which is linked to the Apple USR function. Applesoft initialization
only copies the first four bytes of the five-byte variable that is utilized as the seed for the next random
number iteration. This seed is utilized in the random number generator as a floating-point number rather
than as an integer. The random number generator is conflicted in that it attempts to implement a Linear
Congruential Generator, or LCG equation using floating-point variables. The Applesoft generator even
resorts to byte swapping the first and the third bytes of the final mantissa, a technique that is said to be of
last resort even for a lousy implementation of a random number generator. The two four-byte variables that
are utilized by the Applesoft RND routine are located at 0xEFA6 and 0xEFAA, and yet they are used as
floating-point variables. In the Applesoft interpreter, floating-point variables must be five bytes in size,
one byte for the exponent and four bytes for the mantissa. The assumed exponent in these four-byte
variables, 0x98 for the first and used as a multiplier and 0x68 for the second and used as an addend, differ
by 0x30. Any exponent difference that is greater than 0x20 cannot be accommodated by an Applesoft
normalization routine. Are these two numbers indeed floating-point variables or are they truly 32-bit
integers? What Mr. Sander-Cederlof does not explain in his article Random Numbers for Applesoft in the
May, 1984, magazine Apple Assembly Line, is why the Applesoft RND routine fails to generate more than a
few thousand random numbers before the full period of its sequence is reached. He does offer three useable
routines that are better algorithms according to Donald Knuth in his series of books The Art of Computer
Programming. In Volume 2 Seminumerical Algorithms, pages 155 to 157, Knuth discusses using a standard
LCG in order to easily generate random numbers. The Applesoft RND routine is written as if it is trying to
implement an LCG using floating-point variables. The equation for the standard LCG is given as follows:

Xn+1 = (Xn * A + C) mod(M)

An LCG is an algorithm that yields a sequence of pseudo-randomized numbers that are calculated with a
discontinuous piecewise linear equation. The method represents one of the oldest and best-known pseudo-
random number generator algorithms. The values for A, C, and M are integer constants. Historically, poor
choices for A have led to ineffective implementations of LCGs. Choosing M to be a power of two such as
2#$ often produces a particularly efficient LCG. Correctly choosing the constants A and C will allow a
sequence period equal to M. This will occur if and only if 1) M and C are coprime, 2) A-1 is divisible by all
prime factors of M, and 3) A-1 is divisible by four if M is divisible by four. Typically, LCGs are fast and
require minimal memory. This makes them valuable for simulating multiple independent streams. LCGs
are not intended, and must never be used for cryptographic applications. In practice, LCGs are not suitable
for large-scale Monte Carlo simulations.

 Knuth specifies M to be 2#$ when A and C are 32-bits in size, so four-byte integer variables are used for A
and C in the above equation. Based on the above three rules that Knuth describes in his book, he specifies
that A should equal 0x12B960A5 and C should equal 0x361962EA. These two values are quite different
from the values that are found in the original Applesoft RND routine. Applesoft uses 0x9835447A for A and
0x6828B146 for C. Where Applesoft goes terribly wrong in implementing the LCG equation shown above
is that Applesoft uses these two variables as floating-point arguments and processes them with floating-
point routines. Applesoft multiplies the seed at 0xC9 with its version of A and adds to that product its
version of C. Applesoft then implements a modulo 2#$ by changing the resulting exponent to 0x80 before
it normalizes the final result. Simply stated, floating-point numerical routines are designed to preserve the
most significant bits and discard the least significant bits during the implementation of those numerical

5

routines. This is not what is intended for the design of an LCG that requires a modulo. Specifically, a
modulo dictates that the least significant bits are to be preserved and the most significant bits are to be
discarded. A Peasant integer multiply routine will easily provide the necessary computation. Mr. Sander-
Cederlof provides his 32-bit integer multiply routine claiming that it is tricky and it uses a minimum of
variable and program space. I do agree that the multiply routine that he utilizes is vastly tricky, yet it is not
extraordinary by any means. I have great respect for Mr. Sander-Cederlof and he has written a vast amount
of revolutionary software. However, in this particular instance, the simple Peasant integer multiply routine
that I have chosen to use in my random number generator is smaller in size and faster in overall computation.
Figure 1 shows the Peasant integer multiply routine that I utilize in my Applesoft RND routine.

 : : :
 F740 A0 20 850 ldy #32
 F742 851 ;
 F742 46 62 852 ^8 lsr MULMANT
 F744 66 63 853 ror MULMANT+1
 F746 66 64 854 ror MULMANT+2
 F748 66 65 855 ror MULMANT+3
 F74A 856 ;
 F74A 90 0F 857 bcc >1
 F74C 858 ;
 F74C 18 859 clc
 F74D 860 ;
 F74D A2 03 861 ldx #3
 F74F 862 ;
 F74F B5 9E 863 ^9 lda FACMANT,X
 F751 75 A6 864 adc ARGMANT,X
 F753 95 9E 865 sta FACMANT,X
 F755 95 C9 866 sta IRAND,X
 F757 867 ;
 F757 CA 868 dex
 F758 10 F5 869 bpl <9
 F75A 870 ;
 F75A 06 A9 871 ^1 asl ARGMANT+3
 F7FC 26 A8 872 rol ARGMANT+2
 F75E 26 A7 873 rol ARGMANT+1
 F760 26 A6 874 rol ARGMANT
 F762 875 ;
 F762 88 876 dey
 F763 D0 DD 877 bne <8
 F765 878 ;
 F765 84 A2 879 sty FACSIGN
 F767 84 AC 880 sty FACGUARD
 : : :

Figure 1. Peasant Integer Multiply Routine

Every culture throughout history teaches their children the method or the algorithm that that culture uses in
order to multiply two large numbers by hand. Some cultures emphasize learning multiplication tables
whereas other cultures emphasize learning how to quickly divide by two and multiply by two. The later
method is known as the Peasant multiply method. The multiplier is checked for even or oddness and then
it is halved, any remainder is tossed, and the new value is written below. The multiplicand is scratched out

6

if the multiplier is even, it is doubled, and the new value is written below. All of the retained multiplicand
values are added in order to form the product. That is precisely how the Peasant integer multiply routine
works that is shown in Figure 1. The multiplier resides in the MULMANT register at 0x62 and it contains the
four-byte variable A at 0xEFA4 (I rewrote the previous routine POLYNOM making it faster and two bytes
smaller). The multiplicand resides in the ARGMANT register at 0xA6 and it contains the four-byte seed at
0xC9. The four-byte variable C at 0xEFA8 is copied into the FACMANT register at 0x9E which serves as the
product register. After the multiplier in the MULMANT register is shifted right and if the C-flag is set noting
an odd number, the multiplicand in the ARGMANT register is added to the product in the FACMANT register.
Whether an addition occurs or not, the multiplicand is shifted left thus doubling its value. Any bit that is
shifted into the C-flag by 0xA6 is discarded. Using four bytes in each of these registers ensure that modulo
2#$ remains in force throughout the required thirty-two iterations of this algorithm.

My Applesoft RND routine is engineered somewhat similar to how Mr. Sander-Cederlof designed his RND
routine which he linked to the Apple USR function. If a negative integer argument is provided to my
Applesoft RND routine as in RND(-1234), for example, my RND routine saves that value to IRAND at 0xC9
as a positive 32-bit integer which will be the seed for the next random number iteration. If a zero argument
is provided to my Applesoft RND routine as in RND(0), my RND routine returns the value that is saved in
IRAND as a positive integer value that has a range from zero to 2#! − 1, or 0x0000000 to 0x7FFFFFFF. If
a positive integer argument that is equal to one is provided to my Applesoft RND routine as in RND(1), my
RND routine returns a fractional value that has a range from zero to less than one which is simply the integer
value that is saved in IRAND divided by 2#$. Finally, if a positive integer argument that is equal to a value
that is greater than one is provided to my Applesoft RND routine as in RND(192) or RND(280), for example,
my RND routine returns an integer value that has a range from zero to the supplied integer value minus one.
My RND routine captures the integer value of the argument that is provided to the RND routine, and if that
value is greater than zero, that value is saved to TEMP1 at 0x93 as a Range which is a normalized floating-
point number. Once the processing of the LCG equation that is shown above is complete, an exponent of
0x80 is stored in FACEXP at 0x9D and that 32-bit product integer is normalized as a floating-point number
using the NORMFAC1 routine at 0xE82E. If a Range of one is supplied to my RND routine, the normalized
floating-point fraction is returned unaltered to the user. Otherwise, that floating-point fraction is multiplied
by the value that is stored in TEMP1 using FMULT at 0xE97F, its product is converted to an integer value by
FINT at 0xEC23, and the result is returned to the user as an integer value.

The goal in testing a random number generator is to ensure that the random number generator produces a
random stream of data values. Testing a random number generator can include chi-square tests,
Kilmogorov-Smirnov tests, serial-correlation tests, two-level tests, k-dimensional uniformity or k-
distributivity tests, serial tests, spectral tests, or any combination of these tests. The chi-square test is by
far the most commonly used test because it can be used for any distribution of data, a histogram can easily
be prepared from the observed values, and the observed frequencies can easily be compared with known
theoretical frequencies. Simply stated, a chi-square test shows the relationship between two entities and
whether or not the observed patterns are likely to be purely random. The Kilmogorov-Smirnov test was
designed for continuous distributions of data values. A serial-correlation test can show the degree of
nonzero covariance and its measure of dependence on the random number generator. A two-level test first
uses the chi-square test on a known number of samples that have a known given size, and then it performs
a chi-square test on the same number of chi-square statistics that are obtained. Chi-square is known for its
1-distributivity property, so k-dimensional uniformity for 2-distributivity would generalize on this property
of a random number generator in two or more dimensions. A serial test would build on the chi-square test
in order to isolate the deviation of counts to expected counts, the degrees of freedom, and the use of k-tuples
in order to extract non-overlapping values or values that are not independent of the chi-square test being

7

used. Finally, a spectral test can determine how densely the k-tuples can fill a k-dimensional hyperspace
where the k-tuples can fall on a finite number of parallel hyper-planes.

Visual tests to display the randomness of a random number generator can easily process a massive bitmap
image in order to visualize repetitions and patterns that are produced by a random number generator as side-
effects. The US National Institute of Standards and Technology utilizes fifteen tests alone that include
frequency tests, discrete Fourier transform tests, aperiodic tests, and linear complexity tests. Certainly,
there does exist a huge array of tests and procedures that can be used to quantify the effectiveness of a
random number generator. In the Apple computer, the length of the period before the random number
generator begins to repeat is its most important feature. And, indeed, that period can determine if the
random number generator is sufficient.

The random number generator in the unmodified Applesoft ROM can easily be tested using Applesoft
Program 1 that is shown in Figure 2. As an aside, any Applesoft program can be processed and its
instructions can be displayed as in Figure 2 by an assembly language program that I created and called
Applesoft List. The Applesoft program RND Test 1 enables HIRES using the color WHITE, or 0x7F, it selects
full screen mode, and it uses the Applesoft RND statement in order to set the X and the Y coordinates to turn
a pixel ON using the Applesoft HPLOT statement. As long as a key is not pressed, the program will continue
to select X and Y coordinates in order to turn another pixel ON. If the RND routine can transform the entire
screen area from black to white, the RND function has a period of substantial size such that the RND routine
is sufficient for use on the Apple computer. Figure 3 shows another Applesoft program called RND Test 2
that is nearly identical to RND Test 1. RND Test 2 utilizes the Range feature in my Applesoft RND routine
which I installed in ROM in place of the original RND routine. The Range feature simply performs the
coordinate multiplication which was explicitly done in RND Test 1. Figure 4 shows the results when RND
Test 1 executes on a Virtual][simulated Apple //e computer that contains an unmodified ROM and the
computer is set to maximum speed. No new pixels are created after 4.5 seconds of processing and the
HIRES screen is left only partially converted from black to white. When RND Test 2 executes on another
Virtual][simulated Apple //e computer that contains a modified ROM with my RND routine installed and
the computer is set to the same processing speed, the HIRES screen is fully converted from black to white
in 1:47.5 minutes. Most of the HIRES screen is converted in the first twenty seconds. It simply requires a
bit more time in order to reach ALL of the necessary random number values that will eventually convert
the entire HIRES screen as shown in Figure 5. Figure 5 demonstrates visually that my Applesoft RND routine
is sufficient and, therefore, far more useful in the Apple][computer.

 10 HGR
 HCOLOR = 3
 POKE 49234, 0
 20 X = RND(1) * 280
 Y = RND(1) * 192
 HPLOT X, Y
 IF PEEK(49152) < 128 THEN GOTO 20
 30 POKE 49168, 0
 TEXT
 END
	

	
 10 HGR
 HCOLOR = 3
 POKE 49234, 0
 20 X = RND(280)
 Y = RND(192)
 HPLOT X, Y
 IF PEEK(49152) < 128 THEN GOTO 20
 30 POKE 49168, 0
 TEXT
 END
	

Figure 2. RND Test 1 	 Figure 3. RND Test 2

8

	

Figure 4. RND Test 1 Display
	

Figure 5. RND Test 2 Display

Memory Name Description
0xDE23 FRMSTAK3 Call RNDUP to roundup FAC, push FAC onto the stack, and jump to (INDEX)
0xDE4A NOTMATH Pull ARGEXP first from stack, set ARGSIGN and XORSIGN, and load FACEXP into A-reg
0xE3AF FUNCDATA Pulls five data bytes from stack into (FUNCNAM) indexed by Y-reg from 0-4
0xEAE6 COPYM2F Copy four bytes of MULMANT into FACMANT
0xEAF9 LOADFAC Copy five bytes from (INDEX) into FAC setting FACSIGN; set FACGUARD to zero
0xEB1E COPYF2T1 Copy address of TEMP1 into INDEX; copy FAC into (INDEX); set FACGUARD to zero
0xEB21 COPYF2T2 Copy address of TEMP2 into INDEX; copy FAC into (INDEX); set FACGUARD to zero
0xEB27 COPYF2FR Copy address of FORPNT into INDEX; copy FAC into (INDEX); set FACGUARD to zero
0xEB2B COPYFAC Copy FAC into (INDEX) indexed by Y-reg 0-4; set FACGUARD to zero
0xEB53 COPYA2F Copy ARGSIGN to FACSIGN; copy ARG to FAC (unwound); set FACGUARD to zero

0xEB63 COPYF2A Call RNDUP to roundup FAC; copy FACSIGN to ARGSIGN; copy FAC to ARG (unwound);
set FACGUARD to zero

Table 2. Routines That Copy Floating-Point Registers

Management of Applesoft Floating-Point Registers

Applesoft utilizes a number of floating-point registers in order to assist the various floating-point routines
that comprise all of the mathematical functions that are available in Applesoft. The primary floating-point
register in Applesoft is FAC at 0x9D and the secondary floating-point register is ARG at 0xA5. The multiply
function also utilizes MULMANT at 0x62, a four-byte register that holds only the floating-point mantissa.
Polynomial processing utilizes TEMP1 and TEMP2 at 0x93 and 0x98, respectively, which are full, five-byte
floating-point registers. TAN processing utilizes TEMP1, TEMP2, and TEMP3, for example, and the TEMP3
five-byte register resides at 0x8A. EXP also uses TEMP3 and SQR uses TEMP1. There are eight routines that
copy these registers from one area of memory to another area of memory or from one register to another
register. Most of these routines copy the data to or from a register byte by byte in order to affect the fastest
transfer speed of data at the expense of code space. There are two routines, however, that favor code space
at the expense of data transfer speed. I have unwound both of these indexed register loops ensuring that the
processor register that is used to index the loop is set to its terminating value. Unfortunately, there is a

9

location at 0xDE23 in Applesoft where the entire content of the FAC register is pushed onto the stack after
RNDUP is called. Its complement routine at 0xDE4A pulls from the stack the entire content of the ARG
register. FUNCDATA at 0xE3AF is a routine that pulls from the stack the entire content of a floating-point
number in order to copy it to the address that resides in FUNCNAM, or 0x8A:8B. Table 2 presents all of these
floating-point copy routines, their location in ROM, their names, and a description of their function.

A Better Square Root Routine for Applesoft

The power operator ^ or exponentiation routine POWER in the Applesoft interpreter requires a substantial
amount of processing. Given the general format equation, Z = X ^ Y, the Applesoft interpreter copies the
argument that resides in X into the ARG register and copies the argument that resides in Y into the FAC
register. Once the processing is complete, the Applesoft interpreter copies the result that is in the FAC
register to the Z variable. The Applesoft processing for POWER is:

FAC = EXP[LN(ARG) * FAC]

Processing the ARG register, that is, the value of X, for the value of its natural logarithm adds the square root
of 0.5, divides by the square root of 2.0, subtracts 1.0, executes a polynomial expansion using four
floating-point variables, adds -0.5, and finally multiplies the ARG register by the natural logarithm of 2.0.
The ARG register is then multiplied by the FAC register which contains the argument that resides in Y. That
product is used to raise e to that power by the EXP routine. The EXP routine multiplies the FAC register by
the inverse of the natural logarithm of 2.0 or 1/ln(2), manipulates the exponent of FAC, swaps the FAC and
the ARG registers, subtracts those registers, executes a polynomial expansion using eight floating-point
variables, and finally manipulates the exponent of FAC one last time. This is by far a substantial amount of
processing simply to raise a number to the power of 0.5. That is, to calculate the square root of a number.
Of course, I agree that the necessary routines are already available and in service for their own Applesoft
statement processing: POWER for power and EXP for exponentiation. Is using these available routines
necessarily the better choice rather than specifically using the Newton-Raphson iteration method which is
far more accurate and its processing is faster? The equation for the Newton-Raphson iteration method is:

R = [(N / X) + X)] / 2 until R » X else X = R

Selecting the most appropriate initial value is the most problematic decision that must be made in order to
significantly reduce the number of iterations to the minimum number possible. In all of my reading on the
Newton-Raphson iteration method, I found no useful recommendations for the initial value. Even an
acquaintance of mine who has a PhD in mathematics could not provide a useful recommendation except to
say that any positive value that is not zero would work just fine for the initial value. After I examined a
few floating-point numbers, both fractional numbers and numbers that are greater than one, I observed that
the exponent of its square root value is typically around half of its given value after its exponent bias is
removed. For example, Table 3 lists a few floating-point numbers, their value in Applesoft floating-point
numerical representation, and their square root value, also in Applesoft floating-point numerical
representation. It is rather easy to understand that the exponent of the square root value is around half of
its given value once the exponent bias of 0x80 is removed. And, that is precisely why the Microsoft
engineers utilized the natural logarithm properties and the Applesoft exponentiation routine. If the natural
logarithm of a number is multiplied by 2.0, for example, when e is raised to that power, the original number
is squared. However, the Applesoft exponentiation routine requires a substantial amount of processing in
order to produce a correct value having up to ten numerical places.

10

Number
Applesoft Floating-Point Square Root Value

With Bias Without Bias With Bias Without Bias
0.1234 0x7D7CB923A3 0x037CB923A3 0x7F33DB69B1 0x0133DB69B1
1.234 0x811DF3B646 0x011DF3B646 0x810E308398 0x010E308398
123.4 0x8776CCCCCD 0x0776CCCCCD 0x8431BCA47E 0x0431BCA47E

1,234,000.0 0x9516A28000 0x1516A28000 0x8B0ADB6082 0x0B0ADB6082

Table 3. Floating-Point Numbers and Their Square Roots

: : :
 EE81 20 1E EB 614 FSQR jsr COPYF2T1
 EE84 F0 51 615 beq RTN.EE.D
 EE86 616 ;
 EE86 84 47 617 sty YREG
 EE88 618 ;
 EE88 17 619 clc
 EE89 620 ;
 EE89 49 80 621 eor #EXPBIAS
 EE8B 10 01 622 bpl >1
 EE8D 623 ;
 EE8D 38 624 sec
 EE8E 625 ;
 EE8E 6A 626 ^1 ror
 EE8F 627 ;
 EE8F 18 628 clc
 EE90 629 ;
 EE90 69 80 630 adc #EXPBIAS
 EE92 85 9D 631 sta FACEXP
 EE94 632 ;
 EE94 4C 64 F6 633 jmp FSQR2
 : : :
 F66B 20 21 EB 661 FSQR2 jsr COPYF2T2
 F66E 662 ;
 F66E A9 93 663 lda #TEMP1
 F670 A0 00 664 ldy /TEMP1
 F672 20 66 EA 665 jsr FDIV
 F675 666 ;
 F675 A9 98 667 lda #TEMP2
 F677 A0 00 668 ldy /TEMP2
 F679 20 BE E7 669 jsr FADD
 F67C 670 ;
 F67C C6 9D 671 dec FACEXP
 F67E E6 47 672 inc YREG ; iteration counter
 F680 673 ;
 F680 A9 98 674 lda #TEMP2
 F682 A0 00 675 ldy /TEMP2
 F684 676 ;
 F684 20 B2 EB 677 jsr FPCOMP
 F687 D0 E2 678 bne FSQR2
 F689 679 ;
 F689 60 680 rts
 : : :

Figure 6. The Applesoft FSQR Handler Routine

11

The supplied floating-point argument is saved to the TEMP1 register at 0x93 in line #614 in Figure 6. Using
floating-point example numbers like those shown in Table 3 help to ascertain those few instructions that
are shown from lines #619 to #631 in order to quickly and easily create an appropriate initial value for the
routine. The routine continues in the 0xF0 ROM at 0xF66B. The current approximation of the square root
is saved to the TEMP2 register at 0x98. The supplied argument that resides in the TEMP1 register is divided
by the value that resides in the FAC register, and that quotient is added to the current approximation that
resides in the TEMP2 register. In order to divide the value that now resides in the FAC register by two, the
FAC exponent is simply decremented. The FAC register now contains a new approximation of the square
root. That new square root approximation is compared to the previous approximation that still resides in
the TEMP2 register. If the values compare to ten numerical places, the routine returns with the value of the
square root in the FAC register, or it returns to line #661. Usually, only about four iterations are required.

Management of Coordinate Displacements in HLIN

I have always disliked the unsymmetrical look of a HIRES diagonal line when it is drawn either in the
horizontal or in the vertical direction by the Applesoft HPLOT statement. The HPLOT handler utilizes the
Applesoft HLIN routine in order to draw a line and this HLIN routine persists unchanged even in the
Applesoft of an Enhanced Apple //e, which is shameful in my opinion. I have analyzed the HLIN routine
and found that the routine does not correctly calculate the delta difference of the horizontal and the vertical
coordinate displacements before drawing the requested line. There are two memory locations that simply
require a small code adjustment. The first code adjustment is made at 0xF57A and the second code
adjustment is made at 0xF5A5. It is simply amazing how lovely and symmetrical diagonal lines can be
drawn either from left to right, from right to left, from top to bottom, or from bottom to top. How did the
original Applesoft code pass any sort of testing and/or code review is beyond my comprehension. The issue
primarily rests on how one interprets a delta displacement. The Apple engineers Randy Wigginton and
Cliff Huston, based on my assessment of their HLIN routine, believe that data displacement equals the
difference between two pixel locations both in the horizontal and in the vertical direction. I believe that
data displacement is equal to the difference of two pixel locations minus one in both the horizontal and in
the vertical direction. For example, given two pixel points where A is at (14, 9) and B is at (23, 5), the
horizontal displacement delta would be equal to |14 – 23| - 1 = 8 and the vertical displacement delta would
be equal to |9 – 5| - 1 = 3. The unmodified HLIN routine calculates the displacement difference for these
two pixel points, A and B, as 9 for the horizontal displacement difference and 4 for the vertical displacement
difference. Figure 7 shows pixel points A and B drawn on graph paper. Only when displacement deltas are
used will the modified HLIN routine elegantly draw a diagonal line from one pixel to the other pixel.

The Applesoft HPLOT handler along with the HLIN line drawing routine turns pixels ON or OFF only at
discrete pixel locations that are within the HIRES drawing area. One simply needs to count how many
pixels, either in the horizontal direction or in the vertical direction, that exist between points A and B in
order to understand how many pixels this handler and this line drawing routine are required to manipulate.
There are only 8 pixels horizontally between A and B and there are only 3 pixels vertically between A and B
that can be manipulated. Aside from pixels A and B themselves, only those pixels between A and B need to
be manipulated and either turned ON or turned OFF in order to create the most visually pleasing diagonal
line between pixel points A and B. The displacement difference between A and B is meaningless within the
context of the HLIN line drawing routine. Using a displacement difference to calculate which pixels to turn
ON or which pixels to turn OFF will create a visually irregular and unnatural looking diagonal line each and
every time. When calculating which pixels to manipulate, using a displacement delta to manipulate the
correct line pixels will create the most visually pleasing diagonal line between two HIRES pixels.

12

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Figure 7. HLIN Delta Displacement Calculation

Applesoft Commands Used with SHAPE Table Drawing Routines

The COLDSTRT routine at 0xF128 and the Applesoft statements CALL at 0xF1D5, IN at 0xF1DE, and PR at
0xF1E5 appear to complete Version 1.1 of the Microsoft 6502 BASIC interpreter that Apple Computer
originally leased according to the general layout of Applesoft ROM routines that is shown in Table 1 above.
The remaining ROM code space beginning at 0xF1EC is entirely devoted to those Applesoft statements that
Randy Wigginton and Cliff Huston added to the Applesoft source code in order to support the LORES and
the HIRES screens using specific Applesoft graphic routines. The LORES and the HIRES screens and graphic
routines set the Apple][apart from all previous home computers. These are also the Applesoft graphic
routines that sold the Apple][to the world of amazed engineers, universities, schools, and programmers,
from young adolescents to the retired, having little or vast amounts of programming experience. Never
before was there such a magnificent machine that could easily create visual magic using only Applesoft.

The Applesoft DRAW, XDRAW, ROT, SCALE, and SHLOAD statements, and a number of other Applesoft routines
that support the HIRES drawing handlers of the first four of these five statements, reside between 0xF1EC
and 0xF7FF. Of course, the ROM Monitor is sacrosanct and 0xF800 through 0xFFFF is not utilized in
graphic routines. Upon casual inspection, there are a few routines in the lower 0xF0 ROM that are never
utilized by Applesoft. I believe that the cassette tape recorder data input and output ports are useless except
to support Insta-Disk and c2t processing, routines that were both developed by Egan Ford. Thus, the LOAD
and the READ Applesoft statements are required for this special processing and they are retained in my
modified ROM. All other Applesoft statements that depend on the cassette data ports are unnecessary and
these statements include RECALL, SAVE, STORE, and SHLOAD. It so happens that DOS 4.5.08H conveniently
includes a versatile SHLOAD command as well as a companion SHSAVE command that, together, provide far
more functionality and usefulness than the Applesoft RECALL, SAVE, STORE, and SHLOAD statements
combined. All decisions that concern Applesoft memory utilization require sufficient justifications whether
that memory is better suited for one function rather than for another function. It is my attempt to provide
those justifications in order to design a far more intelligent set of HIRES drawing routines for Applesoft. It
is also mandatory that all Applesoft statements that reside in this lower area of the 0xF0 ROM begin at their
traditional entry points. Any non-critical subroutine or function that is moved to another memory location
will be identified. Typically, programmers only utilize the memory addresses of major statement handlers
and they rarely need to utilize the memory addresses of minor subroutines or functions that are within or
near their statement handlers. Therefore, I will present the 0xF1EC to 0xF7FF memory space and identify
all of the major Applesoft statements or routines, their addresses, and their names as well as all of the minor
subroutines and functions, their addresses, and their names. Table 4 lists all of the major and the minor
handlers, routines, and functions that reside in the Applesoft 0xF0 ROM between 0xF1EC and 0xF7FF.

o

o

A

B

} 3

{ 8

13

Memory Name Description
0xF1EC PLOTFNS Sets LORES comma separated coordinates for H2 and V2
0xF206 GOIQERR Jumps to print Illegal Quantity Error
0xF209 ODRCOOR Gets A, B and C values for HLIN and VLIN
0xF225 PLOT Processes the Applesoft PLOT statement
0xF232 HLIN Processes the Applesoft HLIN statement
0xF241 VLIN Processes the Applesoft VLIN statement
0xF24F COLOR Processes the Applesoft COLOR statement
0xF256 VTAB Processes the Applesoft VTAB statement
0xF262 SPEED Processes the Applesoft SPEED statement
0xF26D TRACE Processes the Applesoft TRACE statement
0xF26F NOTRACE Processes the Applesoft NOTRACE statement
0xF273 NORMAL Processes the Applesoft NORMAL statement	
0xF276 INVERSE Processes the Applesoft INVERSE statement	
0xF280 FLASH Processes the Applesoft FLASH statement	
0xF286 HIMEM Processes the Applesoft HIMEM statement	
0xF2A6 LOMEM Processes the Applesoft LOMEM statement	
0xF2CB ONERR Processes the Applesoft ONERR statement	
0xF2E9 HANDLERR Handles active ONERR GOTO Applesoft statements
0xF318 RESUME Processes the Applesoft RESUME statement	
0xF331 DEL Processes the Applesoft DEL statement	
0xF390 GR Processes the Applesoft GR statement	
0xF399 TEXT Processes the Applesoft TEXT statement	
0xF39F STORE This Applesoft statement is removed
0xF39F CXREAD Reads audio waveform for HEADER, SYNC, and binary DATA
0xF3BC RECALL This Applesoft statement is removed	
0xF3D8 HGR2 Processes the Applesoft HGR2 statement	
0xF2E2 HGR Processes the Applesoft HGR statement	
0xF3EE CLRHIRES Clears selected HIRES screen; replaces HCLR at 0xF3F2 and BCGND at 0xF3F6
0xF411 HPOSN Sets the HIRES pixel cursor position; X,Y-reg horizontal 0-279; A-reg vertical 0-191
0xF457 HPLOT Turn a HIRES pixel ON; X,Y-reg horizontal; A-reg vertical
0xF465 HRMOVLF Minor routine to move the HIRES pixel cursor left
0xF47E HRODDBYT Minor routine to test if COLBITS (0x1C) > 0x1F or COLBITS < 0xE0
0xF48A HRMOVRT Minor routine to move the HIRES pixel cursor right	
0xF49C DRAWHDR Minor routine to test SHPVAL (0xD0); uses OPRND (0x44) to fall into XDRAWIT or DRAWIT
0xF4A6 XDRAWIT Minor routine to map out a pixel; original routine was flawed
0xF4B6 DRAWIT Minor routine to map in a pixel
0xF4D3 HRMOVUP Minor routine to move the HIRES pixel cursor up	
0xF505 HRMOVDN Minor routine to move the HIRES pixel cursor down	
0xF532 BITABLE Minor table of mask values that are used to set COLOR (0x30); original is at 0xF5B2
0xF530 HLINRL This minor routine is removed (never called by Applesoft)
0xF532 BITBYTS BITBYT03, BITBYT04, and BITBYT1C as discrete BIT values
0xF53A HLIN Processes the Applesoft HLIN statement; A,X-reg horizontal 0-279; Y-reg vertical 0-191	
0xF5B2 MSKTBL Minor table moved to 0xF532 (BITABLE)
0xF5B3 ROTATBL Rotation table in 360/64 degrees; COS(90 * X/16) * 0x100, X = 0:15; original at 0xF5BA
0xF5BA COSTABLE Minor table moved to 0xF5B3 (ROTATBL)
0xF5C4 DRAW Processes the Applesoft DRAW statement; original is at 0xF769, jump to 0xF605	

14

0xF5C6 XDRAW Processes the Applesoft XDRAW statement; original is at 0xF76F, jump to 0xF661	
0xF5CB HFIND This minor routine is removed (never called by Applesoft)	
0xF601 DRAW0 This minor routine is removed (never called by Applesoft); initialize SHAPE (0x1A:1B)	
0xF605 DRAW1 This minor routine is folded into DRAW at 0xF5C4
0xF65D XDRAW0 This minor routine is removed (never called by Applesoft); initialize SHAPE (0x1A:1B)	
0xF661 XDRAW1 This minor routine is folded into XDRAW at 0xF5C6	
0xF66B FSQR2 Continuation of Newton-Raphson iteration for square root, R = ((N/X) + X)) / 2
0xF68A COPYA2F3 Continuation of COPYA2F; copy ARG to FAC; see Table 2
0xF69B COPYF2A3 Continuation of COPYF2A; copy FAC to ARG; see Table 2
0xF6B9 GETFNS Get HPOSN coordinates; X/Y-reg for horizontal, A-reg for vertical
0xF6E6 DOIQERR Jumps to print Illegal Quantity Error	
0xF6E9 HCOLOR Processes the Applesoft HCOLOR statement	
0xF6F6 HRCOLTBL HIRES color table
0xF6FE HPLOT Processes the Applesoft HPLOT statement	
0xF721 ROT Processes the Applesoft ROT statement	
0xF727 SCALE Processes the Applesoft SCALE statement	
0xF72D DRWPNT This routine is removed; called by DRAW -> DRAW1 and XDRAW -> XDRAW1
0xF72D FRND2 Continuation of Applesoft RND random number handler
0xF775 SHLOAD This Applesoft statement is removed	
0xF78F TITLE ROM Monitor cold start initialization writes TITLE to the top of the TEXT screen
0xF799 PARSIEX1 Start of patches that support the 80 column display in the Apple //e
0xF7BC TAPEPNT This minor routine is removed (used by STORE and RECALL)	
0xF7D9 GETARYPT This minor routine is removed (used by STORE and RECALL)	
0xF7E7 HTAB Processes the Applesoft HTAB handler correctly	

Table 4. Applesoft ROM Routines from 0xF1EC to 0xF7FF

The routines in my modified Applesoft ROM for the Enhanced Apple //e reside at the same address as they
do in the unmodified Applesoft ROM from 0xF1EC to 0xF39F as shown in Table 4. At 0xF39F I replaced
the Applesoft STORE and the RECALL statements with the CXREAD routine that was originally at 0xC5D1
before I installed the Mini-Assembler into the CXROM space in my modified ROM. Even though it was
unnecessary for me to modify the HGR2 and HGR handlers that support these Applesoft statements, I found
that I was able to process these two handlers faster while adding in an elegant transition from the TEXT page
to the cleared HIRES page. In other words, my routine clears the respective HIRES pages before addressing
any soft switches. The viewer is not shown the HIRES pages as the pages are being cleared as they are in
the unmodified ROM; rather, the viewer is shown the HIRES pages after they have been cleared. Perhaps
HLINRL that was at 0xF530 is a residue of an abandoned effort that began with the initialization of the
0xE0:E2 HIRES coordinate registers. This routine certainly does not appear to have any usefulness in view
of the other HIRES routines such as HLIN, HPLOT, DRAW, and XDRAW. The rotational table, color table, and
the BIT value table are placed primarily at locations in order to maintain the original addresses of the major
handlers that support their Applesoft statements. The unused and deleted HFIND routine at 0xF5CB appears
to be the converse of the HPOSN routine that is retained at 0xF411 because it is used by HPLOT and DRAWCMD.

I found a pair of routines that consist of nearly identical instructions to my good fortune and certainly to my
surprise in the unmodified 0xF0 ROM that resides in my Enhanced Apple //e. The pair of routines is DRAW1
at 0xF605 and XDRAW1 at 0xF661. Both of these routines are exactly 0x58 bytes in size and they each

15

include the DRAWSHP routine as it is called in the modified 0xF0 ROM. And, the routines are identical
except that DRAW1 calls either LRUD1 or LRUD2 and XDRAW1 calls either LRUDX1 or LRUDX2. The only
difference between LRUD1 and LRUD2 is that LRUD1 begins with a clc instruction and it falls directly into
the LRUD2 routine. The same holds true for LRUDX1 and LRUDX2: LRUDX1 begins with a clc instruction
and it falls directly into the LRUDX2 routine. Actually, DRAW1 could call the same routine, LRUD for example,
simply by moving that clc instruction into the DRAW1 routine just prior to the first call to LRUD. The same
would hold true for XDRAW1. The LRUD1 and LRUD2 set of routines and the LRUDX1 and LRUDX2 set of
routines both begin with the same three instructions, so these pair of routines can easily be combined if a
single routine can determine if DRAW1 or if XDRAW1 is processing. That is precisely how DRAW and XDRAW
begin in the modified 0xF0 ROM and the same software instructions follow their introduction. Instead of
calling the DRAWCMD routine, that is DRWPNT at 0xF72D in DRAW1 and in XDRAW1 in the unmodified 0xF0
ROM, the DRAWCMD routine is put in-line following the short introduction of DRAW and XDRAW. Furthermore,
the DRAWSHP routine is also put in-line following the DRAWCMD routine. It is the DRAWSHP routine that is the
most interesting in terms of flawed logic, illogical decisions, and incorrect data table values. Once these
issues are corrected, DRAW and XDRAW become quite amazing tools for the drawing of a shape definition
whose data is contained within a SHAPE table. A SHAPE table can be efficiently loaded into memory using
the DOS 4.5.08H SHLOAD command. This DOS command initializes the HRSHPTBL address at 0xE8:E9
with the address of the SHAPE table that is read into memory at its specified address as well as optionally
initializing the FRETOP address at 0x6F:70 and the HIMEM address at 0x73:74 with the HRSHPTBL address.

Figure 8 shows how the DRAWHDR routine at 0xF49E in Figure 12 can determine if DRAW or if XDRAW is
processing simply by looking at the MSB of the value that resides in OPRND at 0x44. Once the value in
OPRND is established, the code for DRAW and for XDRAW is virtually identical. The code for the DRAW and the
XDRAW handlers for their Applesoft statements when added together requires 311 bytes for their processing
in the unmodified 0xF0 ROM. In the modified 0xF0 ROM, 216 bytes are required to process both the
Applesoft DRAW and the Applesoft XDRAW statements. Saving 95 bytes of precious ROM memory and still
enjoy the same ROM functionality is very good fortune and certainly a welcomed surprise.

The modified 0xF0 ROM version for DRAW and for XDRAW includes further surprises when the flawed logic,
illogical decisions, and incorrect data table values that exist in the unmodified 0xF0 ROM version are
addressed. To complete the unification of the unmodified ROM routines LRUD1, LRUD2, LRUDX1, and
LRUDX2, Figure 12 shows the DRAWHDR, XDRAWIT, and DRAWIT routines and how they literally fall into the
common XDRAW/DRAW routine and the HIRES pixel cursor move routines. Before the data of any SHAPE
definition is processed, the variable HRCOLCNT at 0xEA is initialized to zero. That variable is incremented
every time DRAW or XDRAW finds unexpected congruent data on the HIRES screen that is not part of the
SHAPE definition data. However, Applesoft does not provide any further processing of the HRCOLCNT
variable. It is left to the user to utilize this collision counter for any useful SHAPE definition post-processing.

The Applesoft ROT statement sets the SHAPE rotation to a value from zero to sixty-three according to SHAPE
table documentation in the Applesoft][Basic Programming Reference Manual, publication #030-0013-E.
Each quadrant of a circle can support up to sixteen rotational values depending on the Applesoft SCALE
value. As shown in Figure 8, the HRROT value at 0xF9 is divided by sixteen and the resulting target quadrant
value is saved in ROTQVAL at 0xD1. That target quadrant value is used in Figure 12 along with the direction
of movement information that is contained in the current SHPVAL value in 0xD0. Randy Wigginton and
Cliff Huston were quite clever in their SHAPE value and direction of movement design when that value is
added to the target quadrant value that is shown in lines 208 and 209. The SHPVAL value direction for pixel
cursor movement is 0x00 for UP, 0x01 for RIGHT, 0x02 for DOWN, and 0x03 for LEFT. So, it is no surprise
that when adding in, for example, the next quadrant value or 0x01, the next direction of pixel cursor
movement is automatically selected in a clockwise fashion. If the sum in the A-register sets the C-flag, the

16

C-flag is re-configured for the direction of pixel cursor movement for lines 626 and 638 in Figure 13, and
the HIRES pixel cursor is moved to its next position after the common XDRAW/DRAW processing is complete.

 : : :
 F5C4 18 500 DRAW clc
 F5C5 501 ;
 F5C5 B0 00 502 bcs *+2
 F5C7 503 dfs !-1
 F5C6 504 ;
 F5C6 38 505 XDRAW sec
 F5C7 506 ;
 F5C7 66 44 507 ror OPRND
 F5C9 508 ;
 F5C9 509 ;
 F5C9 510 ; This is the DRAWCMD routine.
 F5C9 511 ;
 F5C9 20 F8 E6 512 jsr GETBYT ; get requested SHAPE number
 : : :
 F5FC 20 C0 DE 557 jsr SYNTXCHK
 F5FF 20 B9 F6 558 jsr GETFNS ; get coordinates
 F602 20 11 F4 559 jsr HPOSN ; get GBASL/GBASH, E0:E2, E5
 F605 560 ;
 F605 561 ;
 F605 562 ; This is the DRAWSHP routine.
 F605 563 ;
 F605 A5 F9 564 ^5 lda HRROT
 F607 565 ;
 F607 4A 566 lsr
 F608 4A 567 lsr
 F609 4A 568 lsr
 F60A 4A 569 lsr
 F60B 570 ;
 F60B 85 D1 571 sta ROTQVAL
 F60D 572 ;
 F60D A5 F9 573 lda HRROT
 F60F 29 0F 574 and #SROTMASK
 F611 AA 575 tax
 F612 576 ;
 F612 BC B3 F5 577 ldy ROTATBL,X
 F615 88 578 dey
 F616 84 D2 579 sty ROTHVAL
 F618 580 ;
 F618 49 0F 581 eor #SROTMASK
 F61A AA 582 tax
 F61B 583 ;
 F61B BC B4 F5 584 ldy ROTATBL+1,X
 F61E 84 D3 585 sty ROTVVAL
 : : :

Figure 8. The DRAW and XDRAW Statement Handlers

The masked value of HRROT in Figure 8 at line #574 is within a single quadrant and that value is used to
select the horizontal and the vertical linear summation values from the ROTATBL table in lines #577 and

17

#584 and utilized in Figure 13. The ROTATBL table is shown in Table 5 and these entries are based on the
linear calculations of COS(90 * X/16) * 256 and of SIN(90 * X/16) * 256 where X ranges from zero to
fifteen. What is observable is that as HRROT increases, the angle from the X-axis increases, the value of the
COS result decreases, and the value of the SIN result increases. This is all based on the rules of trigonometric
functions in order to create the hypotenuse of a triangle whose base is the horizontal argument and whose
height is the vertical argument. The sum of all of the horizontal movements along with the sum of all
of the vertical movements create the path of the hypotenuse that is taken by the HIRES pixel cursor.

Index ROTHVAL ROTVVAL Description
0 0x00 0x00 COS(0) * 256 = 0, SIN(0) * 256 = 0
1 0xFF 0x19 COS(5.625) * 256 = 255, SIN(5.625) * 256 = 25	
2 0xFB 0x32 COS(11.25) * 256 = 251, SIN(11.25) * 256 = 50
3 0xF5 0x4A COS(16.875) * 256 = 245, SIN(16.875) * 256 = 74
4 0xED 0x62 COS(22.5) * 256 = 237, SIN(22.5) * 256 = 98
5 0xE2 0x79 COS(28.125) * 256 = 226, SIN(28.125) * 256 = 121
6 0xD5 0x8E COS(33.75) * 256 = 213, SIN(33.75) * 256 = 142
7 0xC6 0xA2 COS(39.375) * 256 = 198, SIN(39.375) * 256 = 162
8 0xB5 0xB5 COS(45) * 256 = 181, SIN(45) * 256 = 181
9 0xA2 0xC6 COS(50.625) * 256 = 162, SIN(50.625) * 256 = 198
10 0x8E 0xD5 COS(56.25) * 256 = 142, SIN(56.25) * 256 = 213
11 0x79 0xE2 COS(61.875) * 256 = 121, SIN(61.875) * 256 = 226
12 0x62 0xED COS(67.5) * 256 = 98, SIN(67.5) * 256 = 237	
13 0x4A 0xF5 COS(73.125) * 256 = 74, SIN(73.125) * 256 = 245	
14 0x32 0xFB COS(78.75) * 256 = 50, SIN(78.75) * 256 = 251	
15 0x19 0xFF COS(84.375) * 256 = 25, SIN(84.375) * 256 = 255	

Table 5. Rotational Values Based on HRROT

 10 HOME
 D$ = CHR$(4)
 20 PRINT D$; “SHLOAD SPOKE SHAPE,A$B000,B”
 50 HGR
 POKE 49234, 0
 60 HCOLOR = 3
 70 SCALE = 11
 80 HPLOT 0, 0 TO 279, 0 TO 279, 191 TO 0, 191 TO 0, 0
100 FOR R = 0 TO 63
110 ROT = R
120 DRAW 1 AT 140, 96
130 NEXT
140 IF PEEK(49152) < 128 THEN GOTO 140
150 POKE 49168, 0
160 TEXT
170 END

Figure 9. Applesoft Spoke Program

18

In the unmodified 0xF0 ROM, the rotational values that are shown in Table 5 are calculated using a
maximum value of 255 or 0xFF and that generates an illogical value for the very first table entry!
Furthermore, the sum of the horizontal ROTHVAL values and the vertical ROTVVAL values are illogical when
the C-flag is utilized as shown in Figure 13 indicating an overflow of 256 and not of 255 which is the
maximum base for the calculation of these rotational values. This progressively becomes a more serious
flaw particularly when SCALE values are implemented in the unmodified 0xF0 ROM.

The DRAWSHP routine returns to the top of the main loop as shown in Figure 13 at line #600 every time a
new shape vector is extracted either from the existing SHPVAL value or from the next SHPVAL value in the
SHAPE definition data as shown in Figure 14. In the unmodified 0xF0 ROM, the instructions after line #600
masks off the SHPVAL value and always initializes the horizontal and the vertical summation registers with
the value of 0x80. Whatever for? Even when the next shape vector may contain the same identical direction
of movement regardless if a pixel is drawn or not, the coordinate summation registers are re-initialized to
this bizarre value. This is totally absurd and ridiculous. Does this initialization value suggest that the C-
flag should be set earlier by the coordinate summation registers? If the same trigonometric values are in
play while the shape vector direction of movement does not change, the coordinate summation registers
must certainly NOT be re-initialized. I was completely flabbergasted when I analyzed the DRAWSHP routine
in the unmodified 0xF0 ROM and found this algorithm to be grossly illogical. Thinking and saying this
algorithm is grossly illogical is not quite as powerful as showing why and to the extent this algorithm is
grossly illogical. A simple SHAPE definition is utilized for the Applesoft Spoke program that is shown in
Figure 9. The Spoke SHAPE table contains four values of 0x2D, that is, eight shape vectors that have a value
of %0101 for PLOT, move RIGHT. Figure 10 shows the display when this simple Applesoft program is run
on an unmodified Enhanced Apple //e. Figure 11 shows the display when this same Applesoft program is
run on an Enhanced Apple //e that contains my modified 0xF0 ROM. This modified 0xF0 ROM processes
the Applesoft DRAW and XDRAW statements using the Applesoft routines that I have modified and are shown
in Figures 8, 12, 13, and 14 as well as a ROTATBL table that contains the values that are shown in Table 5.

	

Figure 10. Unmodified ROM Spoke Processing
	

Figure 11. Modified ROM Spoke Processing

Even the 0xF0 ROM in the unmodified Enhanced Apple //e contains the HLIN routine modifications that I
describe in the previous section Management of Coordinate Displacements in HLIN. I made these HLIN
routine modifications so long ago that they reside in all of my 0xF0 ROM images. The visual distortions,

19

angle irregularities, and the length of all lines other than the precise horizontal and vertical axes are wrong
in Figure 10. The DRAWSHP routine in the unmodified 0xF0 ROM is completely unacceptable and useless.
For just eight extra bytes of code and a single page-zero variable SHPOLD at 0xD7, the DRAWSHP routine can
be transformed into a very acceptable and useful tool in order to display the content of a SHAPE table as
shown in Figure 11. Figure 11 demonstrates that the original initialization value of 0x80 for the coordinate
summation registers is wrong and that these registers must NOT always be re-initialized for all following
shape vectors. Figure 11 demonstrates that the values that are found in the unmodified ROTATBL table are
wrong and the logic that was used to generate those table values is also wrong.

The section of the DRAWSHP routine that is shown in Figure 13 initializes the Y-register at line #587 from
HRHORZ at 0xE5 and the X-register at line #612 from HRSCALE at 0xE7. For the remainder of this routine,
only the A-register is used to process the coordinate summation registers, manipulate the HIRES screen, and
process all HIRES pixel cursor movements except when the Y-register is appropriately incremented or
decremented. That is an incredible undertaking. Take, for example, the processing of the coordinate
summation registers. Assume that HRROT is set to 0x08 so that both ROTHVAL and ROTVVAL registers will
contain the value of 0xB5. The first summation of ROTHSUM and ROTVSUM will set these registers to 0xB5.
The second to 0x6A with the C-flag set, the third to 0x1F with the C-flag set again, and the fourth to 0xD4.
With the C-flag set twice, the overall sum of these registers is 0x2D4. The hypotenuse length for the first
time the C-flag is set is √256$ + 256$ or 362. The second time the C-flag is set the hypotenuse length is
again set to 362. For the remainder value of 0xD4, the hypotenuse length is √212$ + 212$ or 300. The
total hypotenuse length is now 362 + 362 + 300 = 1024. For a total coordinate length of 0x2D4, the
hypotenuse length is √724$ + 724$ = 1024. This example demonstrates that the coordinate summation
registers ROTHSUM and ROTVSUM must be initialized to 0x00 and if the same trigonometric coordinate values
are in play while the shape vector direction of movement does not change, the coordinate summation
registers must NOT be re-initialized. Therefore, solely based on the setting of the C-flag will the HIRES
screen be manipulated starting at DRAWHDR. After DRAWHDR processing, the setting of the C-flag at lines
#626 and #638 is finally utilized at line #208 in order to precisely move the HIRES pixel cursor to its next
calculated position on the HIRES screen. The DRAWSHP and the DRAWHDR routines are amazingly thorough
in not only manipulating HIRES pixels ON but also HIRES pixels OFF throughout DRAWHDR processing.

The unmodified ROM does not contain the instructions that appears on lines #179 and #184 in Figure 12.
Whatever is written in the Applesoft reference manual on page 98 for XDRAW is incorrect. XDRAW was
designed originally to XDRAW a shape using only White1 or 0x7F and no other color. And that is precisely
what the unmodified ROM code produces. Perhaps this is the time to explain what are the actual services
of DRAW and of XDRAW. First and foremost, DRAW and XDRAW have no relationship or interdependencies and
these two Applesoft statements are not designed to be used in conjunction with the other. DRAW is designed
to manipulate the pixels on the HIRES screen in order to place a SHAPE definition which is drawn from a
SHAPE table over or on top of whatever HIRES pixels are currently being displayed. There is no mechanism
to programmatically remove this SHAPE definition except by drawing another SHAPE definition over the
HIRES pixels that are currently being displayed. Another way to remove the present SHAPE definition is to
paint the background color or new colors over the present SHAPE definition. DRAW does not incorporate any
of the old HIRES pixel information with any of the pixel information data of the new SHAPE definition. On
the other hand, XDRAW incorporates the old HIRES pixel information with the new SHAPE definition pixel
data such that the new SHAPE definition can be easily removed and the old HIRES pixel information can be
restored as it was previously simply by performing another XDRAW with the same SHAPE definition at the
same screen coordinates. As with all graphic routines that make use of the eor microprocessor instruction,
color complements must be taken into consideration when using the Applesoft XDRAW statement. Table 6
shows the shape color to expect with various HCOLOR values when drawing on various background colors.

20

 : : :
 F49E A5 D0 168 DRAWHDR lda SHPVAL
 F4A0 29 04 169 and #PLOTMASK
 F4A2 F0 24 170 beq >3
 F4A4 171 ;
 F4A4 24 44 172 bit OPRND ; XDRAW/DRAW flag
 F4A6 10 12 173 bpl DRAWIT
 F4A8 174 ;
 F4A8 175 ;
 F4A8 176 ; XDRAW code.
 F4A8 177 ;
 F4A8 B1 26 178 XDRAWIT lda (GBASL),Y
 F4AA 25 1C 179 and COLBITS ; added to support color
 F4AC 25 30 180 and COLOR
 F4AE 29 7F 181 and #MSBCLR
 F4B0 D0 12 182 bne >2
 F4B2 183 ;
 F4B2 A5 1C 184 lda COLBITS ; added to support color
 F4B4 25 30 185 lda COLOR
 F4B6 29 7F 186 and #MSBCLR
 F4B8 10 08 187 bpl >1 ; always taken
 F4BA 188 ;
 F4BA 189 ;
 F4BA 190 ; DRAW code.
 F4BA 191 ;
 F4BA B1 26 192 DRAWIT lda (GBASL),Y
 F4BC 45 1C 193 eor COLBITS
 F4BE 25 30 194 and COLOR
 F4C0 D0 02 195 bne >2
 F4C2 196 ;
 F4C2 E6 EA 197 ^1 inc HRCOLCNT ; collision counter
 F4C4 198 ;
 F4C4 199 ;
 F4C4 200 ; Common XDRAW/DRAW code.
 F4C4 201 ;
 F4C4 51 26 202 ^2 eor (GBASL),Y
 F4C6 91 26 203 sta (GBASL),Y
 F4C8 204 ;
 F4C8 205 ;
 F4C8 206 ; C-flag clear in horz summation and set in vert summation.
 F4C8 207 ;
 F4C8 A5 D0 208 ^3 lda SHPVAL
 F4CA 65 D1 209 adc ROTQVAL
 F4CC 210 ;
 F4CC 29 03 211 and #MOVEMASK
 F4CE C9 02 212 cmp #2 ; for down or left
 F4D0 213 ;
 F4D0 214 ;
 F4D0 215 ; ROR sets MSB if move direction is down or left and C-flag
 F4D0 216 ; is set if move direction is right or left.
 F4D0 217 ;
 F4D0 6A 218 ror
 F4D1 B0 92 219 bcs HRMOVLF
 F4D3 220 ;
 F4D3 221 ;
 F4D3 30 30 222 HRMOVUP bmi HRMOVDN ; branch if down
 : : :

Figure 12. The DRAW and XDRAW Screen Routines

21

 : : :
 F620 A4 E5 587 ldy HRHORZ
 F622 588 ;
 F622 A2 FF 589 ldx #NEGONE
 F624 86 D7 590 stx SHPOLD
 F626 591 ;
 F626 E8 592 inx
 F627 86 EA 593 stx HRCOLCNT ; initialize to zero
 F629 594 ;
 F629 A1 1A 595 lda (SHAPE,X)
 F62B 596 ;
 F62B 597 ;
 F62B 598 ; If there is no change in direction, keep summing axes.
 F62B 599 ;
 F62B 85 D0 600 ^1 sta SHPVAL
 F62D 29 07 601 and #SCMDMASK
 F62F 602 ;
 F62F C5 D7 603 cmp SHPOLD
 F631 F0 08 604 beq >2
 F633 605 ;
 F633 85 D7 606 sta SHPOLD
 F635 607 ;
 F635 A9 00 608 lda #ZERO
 F637 85 D4 609 sta ROTHSUM
 F639 85 D5 610 sta ROTVSUM
 F63B 611 ;
 F63B A6 E7 612 ^2 ldx HRSCALE ; get requested SCALE value
 F63D 613 ;
 F63D 614 ;
 F63D 615 ; Horizontal summation.
 F63D 616 ;
 F63D 38 617 ^3 sec
 F63E 618 ;
 F63E A5 D4 619 lda ROTHSUM
 F640 65 D2 620 adc ROTHVAL
 F642 85 D4 621 sta ROTHSUM
 F644 90 05 622 bcc >4
 F646 623 ;
 F646 18 624 clc
 F647 625 ;
 F647 20 9E F4 626 jsr XDRAWHDR
 F64A 627 ;
 F64A 18 628 clc
 F64B 629 ;
 F64B 630 ;
 F64B 631 ; Vertical summation.
 F64B 632 ;
 F64B A5 D5 633 ^4 lda ROTVSUM
 F64D 65 D3 634 adc ROTVVAL
 F64F 85 D5 635 sta ROTVSUM
 F651 90 03 636 bcc >5
 F653 637 ;
 F653 20 9E F4 638 jsr XDRAWHDR
 F656 639 ;
 F656 CA 640 ^5 dex
 F657 D0 E4 641 bne <3
 : : :

Figure 13. The SCALE Loop Routine in DRAWSHP

22

 : : :
 F659 A5 D0 643 lda SHPVAL
 F65B 644 ;
 F65B 4A 645 lsr
 F65C 4A 646 lsr
 F65D 4A 647 lsr
 F65E 648 ;
 F64E D0 CB 649 bne <1
 F660 650 ;
 F660 651 ;
 F660 652 ; Point to next shape in table.
 F660 653 ;
 F660 E6 1A 654 inc SHAPE
 F662 D0 02 655 bne >6
 F664 656 ;
 F664 E6 1B 657 inc SHAPE+1
 F666 658 ;
 F666 A1 1A 659 ^6 lda (SHAPE,X)
 F668 D0 C1 660 bne <1
 F66A 661 ;
 F66A 60 662 rts
 : : :

Figure 14. The SHPVAL Loop Routine in DRAWSHP

HCOLOR
Background Color

Black1	 Green	 Purple	 White1	 Black2	 Orange	 Blue	 White2	
0x00/00 0x2A/55 0x55/2A 0x7F/7F 0x80/80 0xAA/D5 0xD5/AA 0xFF/FF

0 no change no change no change no change no change no change no change no change
1 Green Black White Purple Orange Black White Blue
2 Purple White Black Green Blue White Black Orange
3 White striped mix striped mix ~ Black White striped mix striped mix striped mix
4 no change Black no change no change no change no change no change no change
5 Green Black White Purple Orange Black White Blue
6 Purple White Black Green Blue White Black Orange
7 White striped mix striped mix ~ Black White striped mix striped mix striped mix

Table 6. XDRAW Shape Colors with Background Colors

Colors in particular require two values in order to set the HIRES screen to a solid background color. One
value is used for the even numbered bytes and the other value is used for the odd numbered bytes. Black
and white background colors use only a single value for both the even and the odd numbered bytes. Lines
#181 and #186 in Figure 12 ensure that the most significant bit in HCOLOR is not utilized nor can it be
utilized for HCOLOR 4, 5, 6, and 7. The results for these colors are the same for HCOLOR 0, 1, 2, and 3 as
shown in Table 6. A very unappealing mixture of colors that appear stripped results when a SHAPE
definition is drawn using HCOLOR 3 or 7 over colored backgrounds. On the other hand, a very appealing
white SHAPE definition is drawn using HCOLOR 1 or 2 (or 5 or 6) over both sets of its compliment background
color. It amazes me how little testing Randy Wigginton and Cliff Huston must have done when they

23

designed their XDRAWIT routine and limited their routine to drawing a SHAPE definition that is only white
in color no matter the setting of HCOLOR and without regard to the background color. How impressive is
that? Table 6 shows that the color of any SHAPE definition that is drawn on a HIRES screen by the modified
ROM is partially determined by HCOLOR and partially determined by the setting of the most significant bit
of the background color. Other objects and SHAPE definitions that are drawn in the vicinity of a new SHAPE
definition may be the prime driving forces in determining the final color of a new SHAPE definition as well
as its bit placement within its bytes, whether those bytes are even or odd, and for the specific HIRES line.

Without knowing any more of the history of the development of the Applesoft interpreter when the early
Apple][computer was released for purchase, I can only surmise that time was of the essence in order to
produce a product quickly and without much regard to whether the best choices were made in the design of
many of the routines that process the specific handlers of their Applesoft statements. Clearly, the DRAW and
the XDRAW routines are not thoroughly well designed. The choice to use the exponentiation routine in order
to calculate a square root rather than implementing a simple Newton-Raphson iteration routine is another
example of choosing an inferior design. Using floating-point variables that are processed using floating-
point routines in order to calculate a random number is the epitome of incompetence particularly in view of
attempting to utilize a standard LCG equation that only accepts integers that are processed using only integer
routines. Even though the two floating-point register copy routines at 0xEB53 and 0xEB63 are condensed
processor register loops, more than forty extra processor cycles are consumed and wasted each time one or
the other routine is utilized by other floating-point routines. For involved complex floating-point number
utilization in manipulating matrices of any size, adding these extra processor cycles could very well have a
clear impact on overall processing time and processing duration. Even small refinements in not switching
the TEXT screen to the HIRES screen until the HIRES screen memory is fully initialized is just one example
where a better choice will produce a more elegant result. I have no doubt that some testing was invariably
utilized while the graphic routines were being developed for the early Applesoft interpreter. I do not believe
that sufficient testing was performed or perhaps the test results were simply ignored in haste. It still amazes
me that the Applesoft interpreter has never been updated even once during the production life of the Apple
][computer. What amazes me even more is that the code space for all of the improvements that I have
added to the modified Applesoft ROM have been fully covered by intelligently rewriting the DRAW and the
XDRAW handlers for these Applesoft statements. And yet, there is still some code space remaining for further
improvements. Having a software license may become an unfortunate detriment when software errors,
incompetent routines, and gross negligence can never be remedied.

SHAPE Table Management

SHAPE Manager is an assembly language program that does not utilize any of the flawed HIRES drawing
routines that are found in the unmodified Applesoft ROM. All of the HIRES drawing routines are contained
within the SHAPE Manager program whether the user is utilizing a modified Applesoft ROM or not.
Therefore, SHAPE Manager is not concerned with whether a SHAPE will or will not be correctly and precisely
drawn when a machine is still utilizing an unmodified ROM. Perhaps the user may become so fond of how
lovely the SHAPE Manager HIRES drawing routines draw lines and shapes that they may be encouraged to
install a modified Applesoft ROM into their own machine. I have no doubt that I would be so inclined if I
observed all of the capabilities that these modified Applesoft HIRES drawing routines provide. And, in
combination with SHAPE table file handling in DOS 4.5 Build 08, SHAPE Manager provides all of the
functions and the capabilities in order to generate any and all SHAPE tables that might be required by a
number of versatile programs and utilities which could even include HIRES games.

24

SHAPE Manager utilizes several Draw ICON routines that accelerate the drawing of lines in order to create
the SHAPE drawing windows. These same Draw ICON routines also reside in ICON Maker, another
assembly language program I wrote that can be used to design and build HIRES icons. A thorough
discussion of ICON Maker can be found in DOS 4.5 Volume and File Disk Management System Second
Edition. Draw ICON utilizes lookup tables that are necessary in order to draw lines and shapes at
extraordinary speeds. DRAW and XDRAW both depend on the same routines that calculate HIRES addresses
for the HLIN routine that the Applesoft HPLOT statement depends on. The lookup tables that are used for
Draw ICON are large in size so they can be considered a very expensive option in view of ROM utilization
and, therefore, not as practical as the address calculation routines like those that are found in the Applesoft
ROM. On the other hand, routines that incorporate lookup tables are very practical when they are utilized
in assembly language programs or in hybrid Applesoft program like BFI, a program that attaches relocatable
assembly language routines to an Applesoft program. BFI itself uses Draw ICON in order to draw all of
the HIRES icon images that BFI uses in order to select its various processing algorithms.

A SHAPE drawing window is a defined area on the HIRES graphic screen where a SHAPE definition from a
SHAPE table is drawn. The location of the first pixel that is drawn from the data of a SHAPE definition is
always relative to the upper left-hand corner of its drawing window. Also, that first SHAPE definition pixel
is at some index bit that is within some index byte from the left side of screen and some index scan line
from the top of the screen. In other words, the SHAPE definition start location is some number of pixels to
the left from the left side of the HIRES screen and some number of pixels or scan lines down from the top
of the HIRES screen. When the drawing window is defined, its location is specified by its X- and Y-
coordinates in pixels. These coordinates are used additively to the SHAPE definition data when drawing
each pixel that is defined by each DRAWHDR vector that are contained within the SHAPE definition data bytes.

In order to speed up and accelerate the drawing of lines in Draw ICON or in any other utility or game that
utilizes HIRES graphic routines and animation, lookup tables are necessary in order to obtain maximum
calculation speed. Given an X-location on a scan line that is some number of pixels from the left side of
the screen, that location must be converted into a bit index that is within some byte index. There are forty
bytes of memory that comprise each visible scan line and these forty bytes contain the data for the 280
pixels that can be displayed which amounts to seven pixels for each byte of data. Obviously, converting
pixel number to byte index requires the division by seven with some bit index remainder in pixels. This is
not an easy integer division to implement without using lookup tables. The first set of lookup tables is
called XBASEL and XBASEH, and these tables accomplish this division easily at the expense of 0x118 bytes
of data. XBASE simply determines the byte index from the base screen location that is found in GBAS, a
page-zero pointer at 0x26:0x27. Horizontal pixel number is also used to index into a MASKNDX table in
order to determine which index bit will be turned OFF or turned ON within its byte index, so this table
provides the value for the remainder in the division by seven operation. The MASKNDX table is 0x100 bytes
in size. In order to support color on the HIRES graphic screen, Draw ICON uses a COLORNDX table that is
0x100 bytes in size and this table is also indexed by horizontal pixel number. COLORNDX determines which
color byte is selected from an 8-byte COLORBYT table. Specific bytes are copied from the COLORTBL table
in order to form the COLORBYT table that masks in a selected color for the graphic line that is currently being
drawn. The COLORTBL is 0x20 bytes in size. Already, 0x338 bytes of table data are required just to support
the X-location in pixels in order to accelerate the calculations for drawing a graphic line by Draw ICON.

The Y-location in pixels or scan lines is used to initialize the base screen location or address for the page-
zero pointer GBAS. Steven Wozniak constructed the Apple][HIRES graphic screen in three distinct sections
where each section consists of eight TEXT lines and each TEXT line consists of eight scan lines. Therefore,
there are a total of 192 scan lines that are available for the entire HIRES graphic screen that is visible. Within
each of the three screen sections, the address of one TEXT line to the next TEXT line or group of eight scan

25

lines to the next group of eight scan lines is incremented by 0x80, and each screen section to the next section
is incremented by 0x28. Within one TEXT line, its eight scan lines are each incremented by 0x400.
Wozniak’s design of the Apple][hardware that displays the data that resides in the HIRES graphic screen
memory requires the least number of hardware components when that memory data is addressed for display
using these address specifications. In view of these address specifications, it is quite understandable that
using a lookup table in order to initialize GBAS by using scan line as the index into a YBASE table will
definitely accelerate the calculations for drawing lines by Draw ICON. YBASE actually consists of two
tables called YBASEL and YBASEH that define the full 16-bit base memory address for the start of each scan
line. Obviously, these two tables are each 192 bytes in size. If Applesoft HGR2 is supported, a second set
of YBASE tables would be required.

The total number of bytes that are required for all of the lookup tables that are used to accelerate the
calculations for drawing lines in Draw ICON is 0x4B8 bytes for one HIRES graphic screen. Is using nearly
five pages of memory just for lookup tables really worth it? You bet it is! When lookup tables are utilized,
a line can be drawn nearly instantaneously. If the address calculation procedures that are found in the
Applesoft HPLOT routine at 0xF457 and in the Applesoft HLIN routine at 0xF53A are used instead, a line
would be drawn comparatively at a snail’s pace. There is no faster method to accelerate the calculations
for drawing lines on the Apple][HIRES graphic screen than using these lookup tables in order to initialize
the base screen address, to establish the correct index byte, to select the index bit that is within that index
byte, and to utilize the correct color mask. Another advantage for not using the Applesoft HPLOT and the
Applesoft HLIN handler routines is that the HLIN routine is fundamentally flawed as I pointed out in
Management of Coordinate Displacements in HLIN. My analysis of the assembly language instructions for
the HLIN routine shows that the routine does not correctly calculate the delta difference of the horizontal
and of the vertical start to end points before the routine draws a line. This calculation error severely affects
the appearance of all diagonally drawn lines in my opinion. The HLIN routine that is used in Draw ICON
does not contain these flaws. All diagonal lines are drawn precisely and diagonal lines are segmented
equally in all instances and the results will always be the same without regard to the direction in which the
lines are drawn. The original Applesoft HLIN handler routine cannot make these same guarantees.

The Applesoft reference manual contains Chapter 9 on High-Resolution Shapes. This chapter consists of
eight sections that include How to Create a Shape on page 92, Saving a Shape Table on page 97, Using a
Shape Table on page 98, DRAW on page 98, XDRAW on page 98, ROT on page 99, SCALE on page 99, and
SHLOAD on page 99. It is mandatory for anyone who wishes to make use of a SHAPE table within the
context of an Applesoft program to read and to fully understand the contents of Chapter 9 in its entirety
except for the section on SHLOAD. The modified Applesoft ROM no longer contains the routines that are
necessary to read a SHAPE table into memory by means of a cassette tape recorder using the Applesoft
SHLOAD statement since the Applesoft SHLOAD handler has been removed. DOS 4.5 Build 08 is fully capable
of loading a SHAPE table into memory from an S Type 0x08 file that is in a DOS volume as well as saving
a SHAPE table from memory into an S Type 0x08 file that is in a DOS volume.

The Applesoft reference manual states that a SHAPE table may contain up to 255 shape definitions. A shape
definition consists of a sequence of plotting vectors that are stored in a series of bytes. Each byte within a
shape definition contains three sections where each section may define a Plot vector or a Move vector. Plot
vector A uses bits 0:2, Plot vector B uses bits 3:5, and Move vector C uses bits 6:7. The last data byte in a
shape definition is always zero. Plot vectors A and B use their lower two bits to define a move direction
and their upper bit to define whether to draw a pixel if the bit is set or not to draw a pixel if the bit is not
set. Move vector C can only define a move direction other than UP. Move directions are defined as %00 for
UP, %01 for RIGHT, %10 for DOWN, and %11 for LEFT. For example, the Plot vector to draw and to move
RIGHT would be %101. It is important to understand that the DRAWSHP routine first implements pixel

26

management to draw or not to draw when DRAWHDR looks at the plot bit and then the routine implements
move management to move the HIRES pixel cursor. And, it is important to remember that when the
DRAWSHP routine prepares to process the next Plot vector or Move vector, the routine will only process a
value that is not zero. Furthermore, when the DRAWSHP routine reads the next byte from a SHAPE table and
that value is zero, the routine does not process any further bytes for that shape definition.

These Plot vector, Move vector, move direction, and termination rules all determine what a shape definition
byte may contain and what a shape definition byte may not contain. The SHAPE Manager program must
employ these same rules and restrictions when a user constructs a shape definition and only a Plot or a No
Plot bit followed by pixel cursor movement bits may be used. The most troublesome of all vectors is the
No Plot UP Plot vector and the Move UP vector because both of these vectors have a value of zero. The
Move vector can be used for any movement except for the UP direction. The No Plot UP Plot vector cannot
be used alone; therefore, this vector must be used with either another Plot vector that is not zero or used
with any Move vector that is not zero. Thus, a No Plot UP vector can only be used in vector A since vector
B and vector C cannot equal zero according to Line #649 in Figure 14. A No Plot UP vector can never be
used for vector B. In my experience, I have found that it is better to begin by drawing the desired shape on
graph paper and simply draw a circle in the squares where a pixel is ON and an arrow showing the direction
of movement to the next pixel. Once the complete shape is drawn, select a starting point that would tend
to avoid the UP direction that contains a No Plot pixel, and definitely avoid the UP direction that contains
successive No Plot pixels. There is absolutely no problem utilizing the UP direction as long as that direction
also draws a pixel.

	

Figure 15. SHAPE Manager Introduction
	

Figure 16. SHAPE Manager Main Menu

The Apple][SHAPE Manager program introduction is shown in Figure 15 when that program first begins
its processing. SHAPE Manager is written having DOS 4.5.08H as its required disk operating system since
the DOS SHLOAD and the DOS SHSAVE commands are utilized and these DOS commands are required by
this program. Figure 16 shows the Main Menu for SHAPE Manager. The Main Menu allows easy access
to all of the capabilities and the functions that are available in SHAPE Manager. SHAPE Manager is designed
to provide nine Build windows and one Merge window where all of the various shape definitions can be
combined to form one HIRES SHAPE table. SHAPE Manager provides many possibilities that can be utilized
to easily design a HIRES SHAPE table in a short amount of time. The ten windows that are utilized in SHAPE

27

Manager are drawn by Draw ICON routines for their WIDTH of 48, for their HEIGHT of 48, and for their
THICKNESS of 2. A WIDTH of 48 provides 17% of the HIRES screen width and a HEIGHT of 48 provides
25% of the HIRES screen height. There is certainly more than ample space to create any SHAPE table that
can be used to define a HIRES shape or even a HIRES shape that can be animated. SHAPE Manager only
uses the Applesoft XDRAW statement and the capabilities of the DRAWSHP routine for its program functions.
Therefore, a user must be very well acquainted with Table 6 when selecting a color for a shape and using
its correct color complement against the intended background color. The Applesoft DRAW statement is far
more straightforward to use in many respects. However, shapes that are drawn by DRAW cannot easily be
programmatically removed from the HIRES screen as easily as those shapes that are drawn by XDRAW.

Selecting Option 1 from the SHAPE Manager Main Menu allows the user to clear the selected Build window
or the Merge window and that selection requires a frame number as shown in Figure 17. If a shape definition
does not exist in the selected Build or Merge window, SHAPE Manager issues the warning message that is
shown in Figure 18. If a shape definition does exist in the selected Build or Merge window as shown in
Figure 19, SHAPE Manager issues the completion message that is shown in Figure 20.

	

Figure 17. Enter Clear Frame Number
	

Figure 18. Clear Warning Message

	

Figure 19. Enter Clear Frame Number
	

Figure 20. Clear Completion Message

28

Selecting Option 2 from the SHAPE Manager Main Menu allows the user to build a SHAPE definition within
the selected Build window as shown in Figure 21. The color of the intended shape is selected next as shown
in Figure 22. Figure 23 begins the cyclic loop of Build that first requests whether to draw a pixel or not
and then Build requests the Move direction that is shown in Figure 24. Once the desired Arrow Key is
pressed, the results of this first cycle of inputs is displayed in the lower right-hand corner as shown in Figure
25. The key for these results is N for Number of Plot and Move vectors, I for SHAPE table Index, F for next
vector Field number, and D for current vector Data. The value for D that is shown in Figure 25 is for a Plot
RIGHT vector. A No Plot UP vector is entered in Figure 26 and this causes SHAPE Manager to issue the
warning message in Figure 27. Once any key is pressed, Figure 28 shows the current status that three
vectors have been created, a No Plot UP vector has been entered, and SHAPE Manager is ready to receive
the second vector for the current vector data byte. This vector must either draw a pixel or not move UP.

Once a Plot UP vector is entered in Figure 28, Figure 29 shows the complete summary of all data that has
been entered as well as displaying the complete shape. SHAPE Manager issues the completion message that
is shown in Figure 30 when Q is entered.

	

Figure 21. Enter Build Frame Number
	

Figure 22. Enter Build Color Number

	

Figure 23. Enter Build Pixel ON/OFF
	

Figure 24. Enter Build Move Direction

29

	

Figure 25. Enter Build Pixel ON/OFF	
	

Figure 26. Enter Build Move Direction	

	

Figure 27. Build Info Message
	

Figure 28. Enter Build Pixel ON/OFF	

	

Figure 29. Enter Build Pixel ON/OFF	
	

Figure 30. Build Completion Message

30

The last Plot or Move vector may be deleted from the SHAPE definition data by using the D option for delete
as shown in Figure 29. The D option may be used successively until all data vectors have been removed
from the SHAPE definition data. Each time the D option is entered in order to delete a data vector, SHAPE
Manager recalculates the N, I, F, and D variables for display and the value of those variables assist SHAPE
Manager in adding new Plot or Move vectors into the selected SHAPE definition data buffer.

When the data of a SHAPE definition is read into the buffer of a selected Build window, SHAPE Manager
quickly pre-processes all of the data vectors in that buffer starting with the first vector. SHAPE Manager
utilizes the N, I, F, and D variables for that pre-processing in order to arrive at their final value as if each
Plot and Move vector had been entered manually. Doing this pre-processing ensures that the final value of
each of the N, I, F, and D variables is correct and they can be used to either remove a data vector or to add
a new data vector to the selected SHAPE definition. SHAPE Manager is not designed to manage any data
vector or any set of data vectors that are inconsistent with how DRAWSHP is designed to draw Plot vectors
and to process Move vectors. If inconsistent SHAPE definition data is submitted and the user expects Build
to manage these data vectors, SHAPE Manager may very well abort its routines, mismanage the data vectors,
or even fail to respond to further user input. It is always the responsibility of the user to provide SHAPE
definition data that is consistent with the rules for the format of SHAPE definition Plot and Move vectors.

	

Figure 31. Enter Move Frame Number	
	

Figure 32. Move Warning Message

	

Figure 33. Enter Move Frame Number	
	

Figure 34. Enter Move Move Direction

31

Selecting Option 3 from the SHAPE Manager Main Menu allows the user to move the shape definition
within the selected Build window as shown in Figure 31. If a shape definition does not exist in the selected
Build window, SHAPE Manager issues the warning message that is shown in Figure 32. If a shape definition
does exist in the selected Build window as shown in Figure 33, SHAPE Manager will move that shape
definition one scan line in either the UP or the DOWN direction or one pixel in either the LEFT or the RIGHT
direction solely based on which Arrow key is pressed. An Arrow key may be pressed any number of times.
The start coordinates for the X and the Y locations that are relative to the upper left-hand corner are displayed
in the lower right-hand corner as shown in Figure 34. These are the two coordinates that are utilized in
order to draw the first pixel of the first Plot vector that is contained in the SHAPE definition that resides in
the data buffer for the selected Build window. These coordinate values are also included by the List and
by the Print Main Menu options. When the Q option is entered as shown in Figure 35, SHAPE Manager
issues the completion message that is shown in Figure 36.

	

Figure 35. Move X and Y Coordinates	
	

Figure 36. Move Completion Message

	

Figure 37. Enter Merge Frame Number	
	

Figure 38. Merge Warning Message

Selecting Option 4 from the SHAPE Manager Main Menu allows the user to merge any of the shape
definitions that are displayed in the Build windows and copy that shape definition into the Merge window

32

as shown in Figure 37. If a shape definition does not exist in the selected Build window, SHAPE Manager
issues the warning message that is shown in Figure 38. If a shape definition does exist in the selected Build
window as shown in Figure 39, SHAPE Manager will copy the SHAPE definition data that resides in the
buffer for that selected Build window as a unique SHAPE definition into the SHAPE table data that resides in
the Merge window data buffer as shown in Figure 40. If the Merge window data buffer is empty, SHAPE
Manager copies in total the selected Build window SHAPE definition to the Merge window SHAPE table data
buffer. If the Merge window SHAPE table data buffer is not empty, SHAPE Manager appends the selected
Build window SHAPE definition data to the Merge window SHAPE table data, updates the number of shape
definitions, and inserts a new index into the SHAPE table header that points to the appended data to the
SHAPE table data according to the rules for SHAPE table data format. A second Merge is shown in Figure
41 and its completion message is shown in Figure 42. The data from any number of Build window SHAPE
definitions may be appended to the SHAPE table that resides in the Merge window data buffer up to 255
SHAPE definitions which seems highly implausible. The more plausible limit would be the size of the Merge
window data buffer which is initialized to be 1024 bytes. A buffer of this magnitude would be able to
accommodate at least 2048 Plot and Move vectors which might very well address every single pixel location
in a Merge window that is more than 45 pixels in width and more than 45 pixels in height, or √2048.

	

Figure 39. Enter Merge Frame Number	
	

Figure 40. Merge Completion Message

	

Figure 41. Enter Merge Frame Number	
	

Figure 42. Merge Completion Message

33

Selecting Option 5 from the SHAPE Manager Main Menu allows the user to scale the shape definition that
resides in the selected Build window as shown in Figure 43. If a shape definition does not exist in the
selected Build window, SHAPE Manager issues the warning message that is shown in Figure 44. If a shape
definition does exist in the selected Build window as shown in Figure 45, SHAPE Manager requests the
value that DRAWSHP will use in order to scale the entire SHAPE definition that is shown in Figure 46. Using
that scale value, the shape definition that is shown in Figure 46 is scaled, redrawn, and displayed in Figure
47 as well as issuing the completion message.

	

Figure 43. Enter Scale Frame Number	
	

Figure 44. Scale Warning Message

	

Figure 45. Enter Scale Frame Number	
	

Figure 46. Enter Scale Scale Number

Selecting Option 6 from the SHAPE Manager Main Menu allows the user to rotate the shape definition that
resides in the selected Build window as shown in Figure 48. If a shape definition does not exist in the
selected Build window, SHAPE Manager issues the warning message that is shown in Figure 49. If a shape
definition does exist in the selected Build window as shown in Figure 50, SHAPE Manager requests the
value that DRAWSHP will utilize in order to rotate the entire shape definition that is shown in Figure 51.

34

	

Figure 47. Scale Completion Message	
	

Figure 48. Enter Rotate Frame Number

	

Figure 49. Rotate Warning Message	
	

Figure 50. Enter Rotate Frame Number

	

Figure 51. Enter Rotate Rotate Number
	

Figure 52. Rotate Completion Message

35

Using the rotate value that is shown in Figure 51, the shape definition is rotated, redrawn, and displayed in
Figure 52 as well as issuing the completion message. There are sixteen possible values of rotation in every
quadrant which is limited by the associated SCALE value and the size of the ROTATBL. Personally, I would
have chosen fifteen or eighteen possible values to provide for five or six degrees of rotation per quadrant,
respectively. However, the Applesoft design provides for a maximum of sixty-four possible values for
rotation that is capable of rotating a shape definition within a full circle.

Selecting Option 7 from the SHAPE Manager Main Menu allows the user to load a SHAPE definition into
the data buffer of a selected Build window from a DOS volume. However, if a ctrl-D is entered rather than
a filename as shown in Figure 53 in order to display a volume catalog, SHAPE Manager requests a drive
number as shown in Figure 54. The default slot number is the same slot number where SHAPE Manager
was activated. The volume catalog is shown in Figure 55. Figure 56 shows the entry of a SHAPE table file
name which may include its fully qualified pathname and Figure 57 shows the entry of the desired Build
window number. The fully qualified pathname may contain a slot designation in order to change the default
shot number. Finally, Figure 58 shows the entry of the color that DRAWSHP will utilize for drawing the Plot
vectors that are contained in the SHAPE definition data. The shape is drawn and displayed in Figure 59.

	

Figure 53. Enter SHLOAD ^D for Catalog	
	

Figure 54. Enter SHLOAD Drive Number

	

Figure 55. Display DOS Catalog	
	

Figure 56. Enter SHLOAD File Name

36

	

Figure 57. Enter SHLOAD Frame Number	
	

Figure 58. Enter SHLOAD Color Number

	

Figure 59. SHLOAD Completion Message	
	

Figure 60. Enter SHSAVE File Name

	

Figure 61. Enter SHSAVE Frame Number	
	

Figure 62. SHSAVE Warning Message

37

Selecting Option 8 from the SHAPE Manager Main Menu allows the user to save a SHAPE table onto a DOS
volume from the data buffer of a selected Build window. As in the Load option, if a ctrl-D is entered rather
than a filename, a volume catalog will be displayed for the selected drive number. Figure 60 shows the
entry of a SHAPE table file name which may include its fully qualified pathname and Figure 61 shows the
entry of the desired Build window. If the data buffer of the selected Build window contains no SHAPE
definition data, SHAPE Manager issues the warning message that is shown in Figure 62. On the other hand,
if the data buffer of the selected Build window does contain SHAPE definition data as shown in Figure 63,
the selected SHAPE table data is saved to the selected DOS volume as shown in Figure 64.

The remaining four SHAPE Manager Main Menu options are selected by entering a specific letter for their
option. These four options are L for List, P for Print, R for Refresh, and Q for Quit. The options List
and Print are very similar in that List displays the content of the selected SHAPE definition data to the
screen and Print sends the content of the selected SHAPE definition data to the printer. The option Refresh
will refresh a Build or a Merge window whether its data buffer contains SHAPE definition data or not. The
option Quit terminates all further processing and performs a DOS cold-start at 0x3D3.

	

Figure 63. Enter SHSAVE Frame Number	
	

Figure 64. SHSAVE Completion Message

	

Figure 65. Enter List Frame Number	
	

Figure 66. List Warning Message

38

Selecting Option L from the SHAPE Manager Main Menu allows the user to list the content of the selected
SHAPE definition data to the screen. If the data buffer of the selected Build window that is shown in Figure
65 contains no SHAPE definition data, SHAPE Manager issues the warning message that is shown in Figure
66. The selected SHAPE definition data is formatted and the content of each byte of data is displayed on a
single line showing, at most, all three vectors whether or not a pixel is drawn and the direction that its HIRES
pixel cursor is moved as shown in Figure 67. After the format of all data bytes is displayed, the Build
window specifications are listed showing the start coordinates, the color used to draw the shape, and the
scale and rotational values that were used by DRAWSHP. Figure 68 shows the List completion message.

	

Figure 67. List Data Display	
	

Figure 68. List Completion Message

	

Figure 69. Enter Print Frame Number	
	

Figure 70. Print Warning Message

Selecting Option P from the SHAPE Manager Main Menu allows the user to list the content of the selected
SHAPE definition data to the printer. If the data buffer of the selected Build window that is shown in Figure
69 contains no SHAPE definition data, SHAPE Manager issues the warning message that is shown in Figure
70. Otherwise, the SHAPE definition data that resides in the data buffer of the selected Build window as
shown in Figure 71 is formatted as in the List option. That formatted data is sent to the printer whose slot
interface card must reside in Slot #1 as shown in Figure 72. The printer slot number cannot be configured.

39

	

Figure 71. Enter Print Frame Number	
	

Figure 72. Print Completion Message

	

Figure 73. Enter Refresh Frame Number	
	

Figure 74. Refresh Completion Message

	

Figure 75. Enter Refresh Frame Number	
	

Figure 76. Refresh Complete Message

40

Selecting Option R from the SHAPE Manager Main Menu allows the user to refresh the selected Build or
Merge window and the display of its data buffer content if that selected data buffer contains any SHAPE
definition data. Figure 73 shows that either a Build window or a Merge window may be selected, the
window frame and its content are erased, the window is redrawn, and the content of its data buffer is redrawn
by DRAWSHP as shown in Figure 74. In these figures, Build window 5 contains no SHAPE definition data.
Figures 75 and 76 show the refresh of Build window 3 which does contain SHAPE definition data.

Applesoft SHAPE Table Specifications

The Applesoft interpreter includes four statements which can be used to manipulate shapes by HIRES
graphic routines: DRAW, XDRAW, ROT, and SCALE. Before these statements can be used in an Applesoft
program, a shape must be defined, the shape definition must be stored in memory, and the memory location
of the shape definition must be saved to HRSHPTBL at 0xE8:E9. A shape definition consists of a sequence
of vectors that comprise a series of data bytes. One or more shape definitions may be combined in order to
build a SHAPE table. Each byte in a shape definition is divided into three vectors. Plot vector A uses bits
0:2, Plot vector B uses bits 3:5, and Move vector C uses bits 6:7. The last data byte in a shape definition is
always zero. The DRAW and the XDRAW handlers use the DRAWSHP routine to step through each data byte of
a shape definition, vector by vector, until it reaches the last data byte which is zero. Plot vectors A and B
use their upper bit to draw a HIRES pixel if that bit is set or not to draw a HIRES pixel if that bit is not set
and then use their lower two bits to define a move direction. Move vector C can only define a move direction
other than UP. A data byte that is contained in a shape definition is arranged as follows:

Vector: C B A

Bit Number: 7 6 5 4 3 2 1 0

Field: M M P M M P M M

Each bit pair MM field specifies the direction to move, and each bit P field specifies whether or not to draw
a HIRES pixel before moving. The following defines the value for the MM field and the resulting direction
of movement, and the value for the P field that results in whether or not to draw a HIRES pixel.

If MM = 00 move up
 = 01 move right If P = 0 do not plot pixel
 = 10 move down = 1 do plot pixel
 = 11 move left

Plot vectors A and B both contain a plot field and a move field. Move vector C only contains a move field;
it does not contain a plot field. Move vector C can only specify a move without drawing a HIRES pixel.

The DRAWSHP routine is used by the DRAW and the XDRAW handlers in order to process the shape vectors from
right to left, that is, from least significant bit to most significant bit, beginning with vector A, then with
vector B, and finally with victor C. After a vector is processed, if the remaining vectors of the data byte are
zero, the remaining vectors are ignored. Thus, the data byte cannot contain a Move UP in vector C or %00
because that vector would be ignored after processing the previous vector. Similarly, if vector C is %00,
then vector B cannot contain a No Plot UP or %000 as that vector would also be ignored. Lastly, a No Plot
UP or %000 in section A will end the shape definition unless there is any bit set in vector B. These Plot
vector, Move vector, move direction, and termination rules all determine what a data byte may contain and

{ { {

41

what a data byte may not contain in order to process all of the shape vectors in a shape definition that are
consistent with these rules.

Plot Direction Move Vector Value Plot Vector Value
No UP %00 %000
No RIGHT %01 %001
No DOWN %10 %010
No LEFT %11 %011
Yes	 UP n/a %100
Yes	 RIGHT n/a %101
Yes	 DOWN n/a %110
Yes	 LEFT n/a %111

Table 7. Move and Plot Vector Values

It is easier to manually build a SHAPE table for a shape definition once that shape definition is drawn on
graph paper. Simply put a circle in each square of the graph paper that represents the shape that is drawn
using HIRES pixels. Then select the first HIRES pixel in where to begin drawing the shape. Draw a path
through each circle on the graph paper using only a 90 degree angle for each turn. Next, re-draw the shape
as a series of Plot vectors and Move vectors where each vector moves one square up, down, right, or left.
The Plot vectors may or may not pass through a circle before they move, and the Move vectors never pass
through a circle before they move. So, a circle on the graph paper requires a Plot vector that draws a pixel.
Once all of the Plot vectors and the Move vectors are identified, transform their plot/move symbol into a
bit value according to Table 7 and create a list of Move vector and Plot vector values.

From the list of Move vector and Plot vector values, create an 8-bit data byte by inserting each of the vector
values into their proper field as a vector A first, then as a vector B, and then possibly as a vector C. Always
be mindful of the rules that govern a Move UP %00 vector and a No Plot UP %000 vector from above. A No
Plot UP for vector A cannot stand alone without a Plot or a Move vector for vector B. If it is not possible to
create a data byte that is not zero, chose another location to start drawing the shape and create a new list
of Move vector and Plot vector values. All of the data bytes that are derived from all of the Move vector
and the Plot vector values become the shape definition. The SHAPE table is comprised of the shape header
and the shape definition. Figure 77 shows the definition and the complete layout of a SHAPE table.

Once all of the data bytes are derived from the Move vector and the Plot vector values in order to create a
shape definition having a termination byte of 0x00, preface the shape definition with a header having just
four bytes: 0x01, 0x00, 0x04, and 0x00. This shape header defines one shape definition that resides at
four bytes from the start of the shape header. These header bytes along with the shape definition data bytes
that are terminated with 0x00 comprise a complete SHAPE table. This SHAPE table may now be entered into
memory at some starting address. When all of the SHAPE table data bytes are in memory, the SHAPE table
can be saved to a disk volume using the DOS SHSAVE command if DOS 4.5.08H currently resides in the
computer. Whatever address you provide to the DOS SHLOAD command, DOS will automatically initialize
the HRSHPTBL page-zero variable at 0xE8:E9 with the address that DOS just loaded the SHAPE table. When
the B keyword is used with the DOS SHLOAD command, FRETOP at 0x6F:70 and HIMEM at 0x73:74 will be

42

set to that same load address in order to easily protect the SHAPE table from changes to the Character String
Pool. Applesoft in the modified ROM no longer provides the resources to load a SHAPE table into memory
using a cassette tape recorder.

S = Start Byte S + 0 n (1 to 255)

Total number of shape definitions
 + 1 unused
 + 2 LSB D1 D1 – index to first byte of shape
 + 3 MSB D1 Definition #1 that is relative to S

Header
+ 4 LSB D2

D2 – index to first byte of shape

+ 5 MSB D2 Definition #2 that is relative to S

.

 + 2n LSB Dn Dn – index to first byte of shape
 + 2n+1 MSB Dn Definition #n that is relative to S

 S + D1 First data byte
 Shape Definition #1
 Termination byte

 S + D2 First data byte

Shape
Definitions

 Shape Definition #2
 Termination byte

.

 S + Dn First data byte
 Shape Definition #n
 Termination byte

Figure 77. SHAPE Table Definition Layout

Using an Applesoft SHAPE Table with Applesoft Statements

The Applesoft Spoke program that is shown in Figure 9 is an excellent example in using an Applesoft
SHAPE table. This program is also an excellent example in using the Applesoft statements HCOLOR, SCALE,
and ROT. This Applesoft program first clears the Text screen and it defines the DOS character ^D, that is,
control-D. It uses that DOS character along with the DOS SHLOAD command in order to place the SHAPE
table that resides in the SPOKE SHAPE file at memory address 0xB000. The DOS SHLOAD command
automatically copies the address 0xB000 to the HRSHPTBL page-zero variable at 0xE8:E9. Because the B
keyword is included with the DOS SHLOAD command, FRETOP at 0x6F:70 and HIMEM at 0x73:74 are also
initialized to 0xB000 in order to protect the SHAPE table from further changes to the Character String Pool.
The Applesoft HGR statement clears HIRES memory from 0x2000 to 0x3FFF and the bottom four TEXT
lines are hidden by referencing the 0xC052 address. The Applesoft HCOLOR statement sets HRCOLOR at
0xE4 to 3 which selects WHITE1 or 0x7F for COLOR at 0x30, and the Applesoft SCALE statement sets
HRSCALE at 0xE7 to 11 in order to draw the maximum sized shape possible that still fits within the HIRES

{

}
 }

{

}

}
}

}

43

screen area. The Applesoft HPLOT command in line #80 draws a very nice window frame around the outer
perimeter of the HIRES screen. The Applesoft Spoke program utilizes the Applesoft FOR statement in order
to draw sixty-four copies of the same shape definition from the same starting location in pixels by
initializing the Applesoft ROT statement that sets HRROT at 0xF9 to values from 0 to 63. After the conclusion
of the FOR:NEXT loop, Applesoft line #140 simply waits forever for any keypress, and when a keypress is
detected, the key buffer is cleared by referencing the 0xC010 address in Applesoft line #150. The program
exits HIRES mode, returns to TEXT mode, and ends.

DRAW Statement

DRAW n AT Xn, Yn
 n

Example: DRAW 1 AT 140, 96
 DRAW 2 AT 100, 2
 DRAW 3

The Applesoft DRAW statement draws the specified shape definition number n by this HIRES graphic routine
at the given horizontal and vertical coordinates Xn and Yn, respectively. If only the specified shape
definition number n is given, the last coordinates that were calculated by the most recently executed HPLOT,
DRAW, or XDRAW statement are used for Xn and Yn. The variable n specifies the shape definition number that
must exist within the current SHAPE table. The current SHAPE table must already reside in memory whose
address is saved to HRSHPTBL at 0xE8:E9. The specified shape definition n is drawn at the horizontal
coordinate Xn and at the vertical coordinate Yn. The variable n must be in the range of 1 to 255 and n must
exist within the value that is found in the first byte of the SHAPE table. The first byte of the SHAPE table
contains the total number of shape definitions that exist in that particular SHAPE table. The variable Xn must
be in the range of 0 to 279 and the variable Yn must be in the range of 0 to 191. If the specified values for
these variables are not within these given ranges, an error message is displayed and Applesoft processing
terminates unless an error handler has been previously specified. The Applesoft statements HCOLOR, SCALE,
and ROT must be previously processed in order for the DRAW statement to utilize their values. The values of
HRCOLOR at 0xE4, HRSCALE at 0xE7, and HRROT at 0xF9 are never initialized and their initial values are
indeterminate. If a SHAPE table does not exist in memory or HRSHPTBL contains an indeterminate address,
unpredictable results should be expected that may profoundly alter the contents of memory.

DRAW and XDRAW have no relationship or interdependencies and these two Applesoft statements are not
designed to be used in conjunction with the other. DRAW is designed to manipulate the pixels on the HIRES
screen in order to place a SHAPE definition which is drawn from a SHAPE table over or on top of whatever
HIRES pixels are currently being displayed. There is no mechanism to programmatically remove this SHAPE
definition except by drawing another SHAPE definition over the HIRES pixels that are currently being
displayed. DRAW does not incorporate any of the old HIRES pixel information with any of the pixel
information data of the new SHAPE definition.

The Applesoft DRAW statement draws colors to the HIRES screen such that the data that is drawn replaces
whatever data may previously exist on the HIRES screen. The Applesoft DRAW statement may be used from
both the Apple Command Line and from within an Applesoft program.

44

XDRAW Statement

XDRAW n AT Xn, Yn

Example: XDRAW 1 AT 140, 96
 XDRAW 2 AT 100, 2

The Applesoft XDRAW statement is nearly the same as the Applesoft DRAW statement except that the
horizontal and the vertical coordinates Xn and Yn must always be given with the Applesoft XDRAW statement
along with a shape definition number n.

XDRAW incorporates the old HIRES pixel information with the new SHAPE definition pixel data such that the
new SHAPE definition can be easily removed and the old HIRES pixel information can be restored as it was
previously simply by performing another XDRAW with the same SHAPE definition at the same screen
coordinates. As with all graphic routines that make use of the exclusive-OR microprocessor instruction,
color complements must be taken into consideration when using the Applesoft XDRAW statement.

The Applesoft XDRAW statement draws colors to the HIRES screen such that the data that is drawn becomes
the complement of whatever data may previously exist on the HIRES screen. As previously explained,
Table 6 provides useful information in selecting the shape colors and the background colors in order to
obtain the desired colored results for the shape. The main purpose in using the Applesoft XDRAW statement
is to provide a simple way to erase a shape and to easily redraw that same shape or another shape at the
same HIRES screen location or at another HIRES screen location without erasing the background data. The
Applesoft XDRAW statement may be used from both the Apple Command Line and from within an Applesoft
program.

SCALE Statement

SCALE n

Example: SCALE 1
 SCALE 8

The Applesoft SCALE statement sets the size for a shape to be drawn by the Applesoft DRAW or XDRAW
statements. The change in scale is specified by n which can be any value from 1 to 255. A scale of 0 is
interpreted to be a scale of 256. The routine DRAWSHP utilizes the value n that is found in HRSCALE at 0xE7
by extending each Plot or Move vector n times. SCALE is not initialized by the Applesoft HGR, HGR2, or
RUN statements. Until the first Applesoft SCALE statement is processed, the scale value for any HIRES
graphic routine is indeterminate.

The Applesoft SCALE statement may be used from both the Apple Command Line and from within an
Applesoft program.

45

ROT Statement

ROT n

Example: ROT 1
 ROT 8

The Applesoft ROT statement sets the angular rotation for a shape to be drawn by the Applesoft DRAW or
XDRAW statements. The change in rotation is specified by n which can be any value from 0 to 255. A
rotation of 0 will not change the orientation of the shape on the HIRES screen. The routine DRAWSHP
processes the value n that is found in HRROT at 0xF9 using modulo 64 such that the utilization of n repeats
every instance of 64. An Applesoft ROT = 16 statement orients the shape 90 degrees clockwise, ROT = 32
orients the shape 180 degrees clockwise, and ROT = 48 orients the shape 270 degrees clockwise. For SCALE
= 1, only four rotation values are recognized, that is, 0, 16, 32, and 48. For SCALE = 2, eight rotations are
recognized, and so forth. ROT is not initialized by the Applesoft HGR, HGR2, or RUN statements. Until the
first Applesoft ROT statement is processed, the angular rotation value for any HIRES graphic routine is
indeterminate.

The Applesoft ROT statement may be used from both the Apple Command Line and from within an
Applesoft program.

HCOLOR Statement

HCOLOR n

Example: HCOLOR 1
 HCOLOR 6

The Applesoft HCOLOR statement sets the HIRES graphic routine color to the specified HCOLOR value n. The
HCOLOR value n must be in the range of 0 to 7 and that value resides in HRCOLOR at 0xE4. HRCOLOR is used
as an index into the BITABLE table in order to select the desired value for COLOR at 0x30. HRCOLOR color
values and their associated color names are shown in Table 8. The set of colors that have their MSB clear
cannot be mixed with the set of colors that have their MSB set within modulo 2 bytes. That is, an even
numbered byte and its associated odd numbered byte can support a set of colors that have their MSB clear
and the next even byte along with its associated odd numbered byte can support a set of colors that have
their MSB set. Furthermore, colors of one set may appear in the same bytes on lines above and lines below
the other set of colors. HCOLOR is not initialized by the Applesoft HGR, HGR2, or RUN statements. Until the
first Applesoft HCOLOR statement is processed, the plotting color for any HIRES graphic routine is
indeterminate.

In advanced graphic routines and within a modulo 2 bytes, colors of the same set may be mixed such as
Green, White1, Green, White1 or Blue, Black2, Blue, Black2. Thus, interlaced colors and dithered colors
may produce useful background textures for a variety of intermediate colors and layered colors.

46

The Applesoft HCOLOR statement may be used from both the Apple Command Line and from within an
Applesoft program.

HCOLOR HRCOLOR Name
0 0x00 BLACK1
1 0x2A GREEN
2 0x55 PURPLE
3 0x7F WHITE1
4 0x80 BLACK2
5 0xAA ORANGE
6 0xD5 BLUE
7 0xFF WHITE2

Table 8. HRCOLOR Values and Their Color Names

New SHAPE Table Commands in DOS 4.5 Build 08

A great deal of effort went into a project to modify DOS 3.3 that would load a Binary file directly into
memory when I first began working at Sierra On-Line late in 1983. This effort produced a modified DOS
BLOAD command that utilized additional keywords that would provide the necessary parameters in order to
achieve its accelerated processing rate. Unfortunately, I have no further information on the additional
keywords that were utilized and the extent of the modifications that went into DOS 3.3, the DOS BLOAD
command, and the Valid Keyword table. Binary files could be loaded into memory in a surprisingly
accelerated rate by this uniquely modified DOS 3.3. After I redesigned the DOS HELP command for DOS
4.5 Build 06 as I thoroughly explain in DOS 4.5 Volume and File Disk Management System Second Edition,
I was able to include a number of additional features into that DOS, and the DOS SLOAD and SSAVE
commands were two DOS commands that I had available space to include. The DOS SLOAD command is
very competitive to that modified Sierra On-Line BLOAD command and it is able to read into memory a
Special Binary file in a surprisingly accelerated rate. The Special Binary file does not utilize the first four
bytes in its first data sector for its memory load address and for its length in bytes since those four bytes are
missing. The memory load address and the length in bytes for a Special Binary file must be already known
in order to write this file onto a disk volume or to read this file from a disk volume. Since I began developing
the SHAPE management software and exploring the Applesoft ROM routines that specifically manage
SHAPE tables, I have reconsidered the usefulness of both the DOS SLOAD and SSAVE commands.
Furthermore, removing all of the routines that depend on the cassette input and output data ports except for
the LOAD and the READ Applesoft statements leaves the demand for developing a DOS SHLOAD command
to replace the excised Applesoft SHLOAD statement as well as developing a companion DOS SHSAVE
command.

The Binary File commands in the DOS 4.5 Build 08 command repertoire consist of those commands that
manage the general operation of Binary or assembly language files. The DOS BLOAD command loads a
Binary file into memory from a disk volume. The DOS BRUN command loads a Binary file into memory
from a disk volume before it begins processing the instructions that now reside in memory. The DOS BSAVE
command saves the Binary program that currently resides in memory into a file in a disk volume. The DOS

47

LLOAD command loads a Lisa Binary file into memory from a disk volume. The DOS LSAVE command
saves the Lisa Binary program that currently resides in memory into a file in a disk volume. The DOS
SHLOAD command loads a SHAPE Table Binary file into memory from a disk volume. The DOS SHSAVE
command saves a SHAPE Table Binary structure that currently resides in memory into a file in a disk volume.

The syntax of the Binary File commands for DOS 4.5.08H is shown in Table 9. All of the Binary File
commands are permitted to be used from within an Applesoft program or an assembly language routine as
well as on the Apple Command Line.

Command Command Syntax
BLOAD f [,Ss][,Dd][,Vv][,Aa][,R]
BRUN f [,Ss][,Dd][,Vv][,Aa]
BSAVE f [,Ss][,Dd][,Vv][,Aa][,B][,Ll][,R[1]]
LLOAD f [,Ss][,Dd][,Vv][,Aa][,R]
LSAVE f [,Ss][,Dd][,Vv][,Aa][,B][,Ll][,R[1]]
SLOAD f [,Ss][,Dd][,Vv][,Aa][,B][,R]
SSAVE f [,Ss][,Dd][,Vv][,Aa][,B][,Ll][,R[1]]

Table 9. Binary File Commands in DOS 4.5.08H

SHLOAD Command

SHLOAD f [,Ss][,Dd][,Vv][,Aa][,B][,R]

Example: SHLOAD DRAW SHAPE.S,A$B000
 SHLOAD DRAW SHAPE.S,A$B000,B
 SHLOAD DRAW SHAPE.S,R

This command is not available in DOS 3.3 for Binary File commands and this command was initially
developed for DOS 4.5 Build 08. The DOS SHLOAD command reads into memory the SHAPE Table Binary
file f in the specified volume at memory address a if the A keyword is included. If the A keyword is not
included with the DOS SHLOAD command, the SHAPE Table Binary file f is read into memory at the address
the file was originally saved or last saved. SHAPE Table Binary files are Special Binary file Type 0x08.

The DOS SHLOAD command copies the 16-bit memory load address that resides in ADRVAL into the page-
zero variable HRSHPTBL at 0xE8:E9 in the same way as it is copied by the handler for the Applesoft SHLOAD
statement. The handler for the Applesoft SHLOAD statement also copies the memory load address to the
page-zero variables FRETOP at 0x6F:70 and to HIMEM at 0x73:74. Only if the B keyword is included with
the DOS SHLOAD command will DOS copy the memory load address that is in ADRVAL to FRETOP and to
HIMEM.

48

If the R keyword is included with the DOS SHLOAD command, the memory load address and the number of
bytes that are read into memory are displayed. A SHAPE Table Binary file utilizes the first four bytes in its
first data sector for its memory load address and for its length in bytes where both pair of bytes are in Lo/Hi
byte order. Therefore, when the A keyword is not included with the DOS SHLOAD command, the memory
load address information is obtained from the first pair of bytes in its first data sector. The DOS SHLOAD
handler always obtains the number of bytes to read into memory from the second pair of bytes in its first
data sector.

SHSAVE Command

SHSAVE f [,Ss][,Dd][,Vv][,Aa][,B][,Ll][,R[1]]

Example: SHSAVE DRAW SHAPE.S
 SHSAVE DRAW SHAPE.S,B
 SHSAVE DRAW SHAPE.S,R
 SHSAVE DRAW SHAPE.S,A$B000,L$34,R1

This command is not available in DOS 3.3 for Binary File commands and this command was initially
developed for DOS 4.5 Build 08. The DOS SHSAVE command saves the SHAPE Table Binary structure to
file f on the specified volume using the memory address a and the length l in bytes if the A and the L
keywords are included, respectively. In DOS 4.5 these keywords are optional, but if they are included,
both values are required. If the A and the L keywords are not included, the address a and the length l values
of the previous SHLOAD or SHSAVE command are utilized. SHAPE Table Binary files are Special Binary file
Type 0x08.

The B keyword can be used with the DOS SHSAVE command in order to implement the File Delete/File
Save strategy. That is, the SHAPE Table Binary file f is deleted from the volume and then saved to the same
volume in order to ensure that the TSL sector(s) of file f contain only those Track/Sector entry pairs that
are required and utilized by the file.

If the R keyword is included with the DOS SHSAVE command, the memory save address and the number of
bytes that are written to the specified volume are displayed. If a non-zero R keyword is included with the
DOS SHSAVE command, the number of verified sectors is also displayed with the memory address and the
file size information. If CONFIG Bit 1 is set, the SHAPE Table Binary file f is not verified after it is saved
to the specified volume. The VALSCNFG variable can be cleared by using the R keyword with the DOS
CONFIG command followed by a comma.

Modified Applesoft FILE Commands in DOS 4.5 Build 08

The Applesoft File commands in the DOS 4.5 Build 08 command repertoire consist of those commands
that manage the general operation of Applesoft files. The DOS CHAIN command loads an Applesoft file
into memory and preserves the variables of the previous Applesoft program. The DOS LOAD command
loads an Applesoft file into memory. The DOS RUN command loads an Applesoft file into memory before

49

it begins processing the Applesoft statements that now reside in memory. The DOS SAVE command saves
the Applesoft program that currently resides in memory to a file in a disk volume.

The syntax of the Applesoft File commands is shown in Table 10. The Applesoft File commands are
permitted to be used from within an Applesoft program or an assembly language routine as well as on the
Apple Command Line. However, the DOS CHAIN command is not permitted to be used on the Apple
Command Line.

Command Command Syntax
CHAIN f [,Ss][,Dd][,Vv][,Aa][,Ll][,R]
LOAD f [,Ss][,Dd][,Vv][,Aa][,R]
RUN f [,Ss][,Dd][,Vv][,Aa][,Ll]
SAVE f [,Ss][,Dd][,Vv][,B][,R[1]]

Table 10. Applesoft File Commands in DOS 4.5.08H

CHAIN Command

CHAIN f [,Ss][,Dd][,Vv][,Aa][,Ll][,R]

Example: CHAIN CHAINPART2,D2
 CHAIN CHAINPART2,A$1000
 CHAIN CHAINPART2,L10

This command is not available in DOS 3.3 for Applesoft File commands and this command was initially
developed for DOS 4.1. This command was enhanced for DOS 4.5.08H to accept the A keyword. The DOS
CHAIN command can only be used from within an Applesoft program or by an assembly language routine.
This Applesoft File command reads into memory at 0x0801 or at the specified address a if the A keyword
is given, the Applesoft program that is contained in the Applesoft file f in the specified volume. The byte
length of the Applesoft program is found in the first two bytes of the first data sector of the Applesoft file
f. Applesoft files are file Type 0x02. DOS begins processing the Applesoft file f in a unique way such
that the DOS CHAIN handler does not clear the value(s) of any previous Applesoft program variable(s).
Therefore, the Applesoft program can utilize the numerical and the string data results from the previous
Applesoft program(s) and the current Applesoft program can provide its numerical and its string data results
to any following Applesoft program(s) that may be sequentially processed by the DOS CHAIN command.
If the A keyword is included with the DOS CHAIN command, the DOS CHAIN handler copies the specified
address a to PRGTAB at 0x67:68. Applesoft initializes PRGTAB during its COLDSTRT initialization to the
initial value of 0x0801. The address in PRGTAB may be changed by the DOS CHAIN command for an
Applesoft program that has already been initialized to that same address. Refer to the DOS LOAD command
for further details on Applesoft program address initialization. Applesoft does not provide any means to
re-initialize PRGTAB to the COLDSTRT value of 0x0801. The address in PRGTAB remains constant unless it
is changed by another DOS Applesoft command.

50

If the L keyword is included with the DOS CHAIN command, Applesoft processing will begin at that
Applesoft program line number l only if that line number l exists, otherwise the Applesoft interpreter will
report an error and terminate further Applesoft processing. Obviously, this capability opens up a multitude
of selective programming functionality that could be based on its program processing for selective entry
program line numbers for l.

If the R keyword is not used with the DOS CHAIN command, the DOS CHAIN handler will automatically
call the Applesoft GARBAG routine at memory address 0xE484 before the DOS CHAIN handler moves the
Simple Variable and the Array Variable descriptors to their new memory location at the end of the Applesoft
file f. Using the R keyword will bypass that call to the Applesoft GARBAG routine and it allows the user to
utilize another method, process, or strategy in order to collect and remove character string data garbage
before or after using the DOS CHAIN command. It is critical that the Applesoft program that invokes the
DOS CHAIN command locate or cause to move all of its simple character string variables and character
string array variables to the Character String Pool that are intended to be utilized by the chained Applesoft
program. All character string data that safely resides in the Character String Pool will be available to the
current Applesoft program or to another Applesoft program when the DOS CHAIN command is invoked. A
more in-depth discussion of the DOS CHAIN command can be found in Section I.15 of DOS 4.5 Volume
and File Disk Management System Second Edition. The DOS CHAIN handler concludes its processing and
enters 0xD955 in the Applesoft ROM by means of the ASROMSET variable. This Applesoft ROM location
initializes the start address of the Applesoft program if the L keyword is included with the DOS CHAIN
command. This particular Applesoft processing utilizes the Applesoft FNDLIN2 routine at 0xD61E in order
to locate the Applesoft program line number l that the DOS CHAIN handler saves to LINNUM at 0x50:51.
Finally, the DOS CHAIN handler enters the Applesoft NEWSTT routine at 0xD7D2 by means of the DOS
ASROMNEW variable. The Applesoft NEWSTT routine begins to process each Applesoft statement in the
Applesoft program that currently resides in memory.

	

Figure 78. CHAIN Program Listings
	

Figure 79. CHAIN Program Outputs

Figure 78 shows the program list of two Applesoft programs named START and PROGRAM2. The Applesoft
START program defines four simple variables which are D$, AB, CD%, and EF$. The character string variable
EF$ is defined in such a way as to cause the Applesoft interpreter to relocate that string variable into the

51

Character String Pool where that variable can be safely stored and utilized by a chained Applesoft program.
The Applesoft interpreter also moves the variable D$ to the Character String Pool before that variable is
utilized with the DOS CHAIN command. All four variables will be available to Applesoft PROGRAM2
program when the DOS CHAIN command is issued as shown in line 40 in Figure 78. Figure 79 shows the
text output of the Applesoft START program after the program is RUN. The Applesoft PROGRAM2 program
clearly shows the values of the four simple variables from the Applesoft START program, and not only have
these variable names been absolutely preserved but also their respective values have been absolutely
preserved. Even the value for the variable D$ has been absolutely preserved, otherwise the DOS CATALOG
command in the Applesoft PROGRAM2 program would totally fail.

A character string descriptor contains only the first two characters of a character string name, so care must
be given in naming all Applesoft variables. The memory address that is in a character string descriptor or
in a character string element is initially the memory location where the character string data resides within
the contents of its Applesoft program. Once the DOS CHAIN command has replaced the current Applesoft
program in memory with the next Applesoft program that is specified by file f, the resident program
character string data will be overwritten by file f and lost, and its address or its location in memory will
become invalid. Therefore, caution must be exercised when using character string variables whose memory
address is still within the current Applesoft program. When those character string variables are not caused
to be moved, that is, when they are not copied from within the contents of an Applesoft program to the
Character String Pool and safely stored in that memory location, those character string variables will never
be available for general access by the next or other chained Applesoft program(s).

LOAD Command

LOAD f [,Ss][,Dd][,Vv][,Aa][,R]

Example LOAD HELLO
 LOAD HELLO,A$1000
 LOAD HELLO,R

This command is available in DOS 3.3 for Applesoft File commands and this command was enhanced for
DOS 4.1 to accept the R keyword. This command was further enhanced for DOS 4.5.08H to accept the A
keyword. This Applesoft File command reads into memory at 0x0801 or at the specified address a if the A
keyword is given, the Applesoft program that is contained in the Applesoft file f in the specified volume.
The byte length of the Applesoft program is found in the first two bytes of the first data sector of the
Applesoft file f. Applesoft files are file Type 0x02. The DOS LOAD command will also process A Type
files, or file Type 0x20, as an Applesoft program in the same way those files Types are processed in DOS
3.3.

If the A keyword is included with the DOS LOAD command, the DOS LOAD handler copies the specified
address a to PRGTAB at 0x67:68. Applesoft initializes PRGTAB during its COLDSTRT initialization to the
initial value of 0x0801. The address in PRGTAB may be changed by the DOS LOAD command for an
Applesoft program that has already been initialized to that same address. Applesoft does not provide any
means to re-initialize PRGTAB to the COLDSTRT value of 0x0801. The address in PRGTAB remains constant
unless it is changed by another DOS Applesoft command. Applesoft program address initialization is

52

automatically performed on an Applesoft program after it has been loaded into memory using the DOS
LOAD command. The DOS LOAD handler concludes its processing and enters the Applesoft ASENTER routine
at 0xD4F2 by means of the DOS RESETADR address at 0xBEE8. The Applesoft ASENTER routine begins the
Applesoft interpreter and it first loads the address that resides in PRGTAB, decrements that address, and
copies that decremented address to DATPTR at 0x7D:7E and to TXTPTR at 0xB8:B9, it copies HIMEM at
0x73:74 to FRETOP at 0x6F:70, and it copies VARTAB at 0x69:6A to ARYTAB at 0x6B:6C and to STREND at
0x6D:6E. The Applesoft ASENTER routine also forces the stack pointer to 0xF8. After the routine has
performed this initialization, the Applesoft ASENTER routine copies the address in PRGTAB to INDEX at
0x5E:5F and it uses INDEX to re-initialize the memory address to the next Applesoft line number throughout
the entire Applesoft program. Every time the DOS LOAD command is used to read an Applesoft program
into memory, that Applesoft program is processed from start to end in order to ensure that all of the
addresses that point to their next Applesoft line number conform to the memory address that currently
resides in PRGTAB. If a user wishes to select another address other than 0x0801 in order to chain or run
Applesoft programs, the DOS LOAD command must be used along with the A keyword to load the Applesoft
file f into memory at that memory location a and to save the modified Applesoft program address initialized
file f using the DOS SAVE command. This will allow the Applesoft CHAIN and RUN commands to utilize
the A keyword successfully. Therefore, when PRGTAB does not utilize 0x0801 for the beginning address of
an Applesoft chained program, all Applesoft files that utilize the DOS CHAIN command must be loaded and
saved at the new address a in PRGTAB in order to establish proper Applesoft program address initialization
for those Applesoft programs so that they will successfully function at the selected address a other than
0x0801. All Simple Variables and Array Variable descriptors will be moved to their new memory location
at the end of Applesoft file f.

If the R keyword is included with the DOS LOAD command, the memory load address and the number of
bytes that are read into memory are displayed after the DOS command. Figure 80 shows the DOS LOAD
command with the Applesoft HELLO file along with the R keyword. In this example, the HELLO file is
loaded into memory at address 0x0801 and the number of bytes that are read from this file is shown to be
0x0494.

	

Figure 80. LOAD and SAVE Commands
	

Figure 81. SAVE Command Display

53

RUN Command

RUN f [,Ss][,Dd][,Vv][,Aa][,Ll]

Example: RUN
 RUN START
 RUN START,A$1000
 RUN START,L10

This command is available in DOS 3.3 for Applesoft File commands and this command was enhanced for
DOS 4.5.08H to accept the A keyword. This Applesoft File command reads into memory at 0x0801 or at
the specified address a if the A keyword is given, the Applesoft program that is contained in the Applesoft
file f in the specified volume and Applesoft begins processing the program statements. The byte length of
the Applesoft program is found in the first two bytes of the first data sector of the Applesoft file f. Applesoft
files are file Type 0x02.

If the A keyword is included with the DOS RUN command, the DOS RUN handler copies the specified address
a to PRGTAB at 0x67:68. Applesoft initializes PRGTAB during its COLDSTRT initialization to the initial value
of 0x0801. The address in PRGTAB may be changed by the DOS RUN command for an Applesoft program
that has already been initialized to that same address. Refer to the DOS LOAD command for further details
on Applesoft program address initialization. Applesoft does not provide any means to re-initialize PRGTAB
to the COLDSTRT value of 0x0801. The address in PRGTAB remains constant unless it is changed by another
DOS Applesoft command.

If the L keyword is included with the DOS RUN command, Applesoft processing will begin at that Applesoft
program line number l only if that line number l exists, otherwise the Applesoft interpreter will report an
error and terminate further Applesoft processing. Obviously, this capability opens up a multitude of
selective programming functionality that could be based on its program processing for selective entry
program line numbers for l. The DOS RUN handler concludes its processing and enters the Applesoft
SETPTRS routine at 0xD665 by means of the DOS ASROMCLR variable. The Applesoft SETPTRS routine
loads the address that resides in PRGTAB, decrements that address, and copies that decremented address to
DATPTR at 0x7D:7E and to TXTPTR at 0xB8:B9, it copies HIMEM at 0x73:74 to FRETOP at 0x6F:70, and it
copies VARTAB at 0x69:6A to ARYTAB at 0x6B:6C and to STREND at 0x6D:6E. The Applesoft SETPTRS
routine also forces the stack pointer to 0xF8. Next, the DOS RUN handler enters 0xD955 in the Applesoft
ROM by means of the ASROMSET variable. This ROM location initializes the start address of the Applesoft
program if the L keyword is included with the DOS RUN command. This Applesoft processing utilizes the
Applesoft FNDLIN2 routine at 0xD61E in order to locate the Applesoft program line number l that the DOS
RUN handler saves to LINNUM at 0x50:51. Finally, the DOS RUN handler enters the Applesoft NEWSTT
routine at 0xD7D2 by means of the DOS ASROMNEW variable. The Applesoft NEWSTT routine begins to
process each Applesoft statement in the Applesoft program that currently resides in memory. An example
in using the Applesoft RUN command is shown previously in Figure 79.

54

SAVE Command

SAVE f [,Ss][,Dd][,Vv][,B][,R[1]]

Example: SAVE HELLO2
 SAVE HELLO2,B
 SAVE HELLO2,R
 SAVE HELLO2,R1

This command is available in DOS 3.3 for Applesoft File commands and was enhanced for DOS 4.1 to
accept the B and the R keywords, and this command was further enhanced for DOS 4.3. This Applesoft File
command saves the Applesoft program that currently resides in memory to the Applesoft file f in the
specified volume. The Applesoft variable PRGTAB at 0x67.68 specifies the beginning address of the
Applesoft program that is currently in memory and the Applesoft variable PRGEND at 0xAF.B0 specifies the
ending address of the Applesoft program that is currently in memory. The DOS SAVE command utilizes
both the PRGTAB and the PRGEND variables in saving an Applesoft program that is currently in memory to
the Applesoft file f in the specified volume. Applesoft files are file Type 0x02.

If the R keyword is included with the DOS SAVE command, the save address and the number of bytes that
are written to the file are displayed as shown previously in Figure 80 which is 0x0494 bytes in that example.
If a non-zero R keyword is included with the DOS SAVE command, the number of verified sectors is also
displayed after the number of bytes saved, again as shown previously in Figure 80.

The B keyword can be used with the DOS SAVE command in order to implement the File Delete/File Save
strategy. That is, the Applesoft file f is deleted from the volume and then saved to the same volume in
order to ensure that the TSL sector(s) of file f contain only those Track/Sector entry pairs that are required
and utilized by the file. If CONFIG Bit 1 is set, the Applesoft file is not verified after it is saved to the
specified volume. Figure 81 shows that even when a non-zero R keyword is used with the DOS SAVE
command, no sectors are verified when CONFIG Bit 1 is set. The VALSCNFG variable can be cleared by
using the R keyword with the DOS CONFIG command followed by a comma that is also shown in Figure
81.

Summary

As in most new investigations, the learning curve is initially steep. A great effort was employed by
Microsoft to design a floating-point BASIC for one of the early microprocessors and to port that software
package to other microprocessors and their respective platform. In the software ports that I witnessed at
Sierra On-Line, most of the generic software was portable and some of the unique software was hardware
dependent to the Apple][, to the Commodore 64, to the TRS-80, and to various other Atari PROMs. I have
no doubt that some concessions were made when Microsoft ported their 8080 BASIC to the 6502
microprocessor and specifically to the Apple][platform. The assembly code for Applesoft is highly
compacted which contributes to the difficulty in exploring its routines and functions. Only when I designed
my own similar routines did I fully appreciate how elegantly Microsoft designed many of their routines.
Keeping fundamental routines at their established memory location in ROM is another contribution to the
difficulty in investigating alternative processing choices. Would it really be worth the time and the effort

55

to verify improvements to floating-point handling if guard bytes were also pushed onto and popped from
the stack, for example? Certainly, there still remains a few routines that continue to interest and amaze me
and they propel my exploration into the further depths of Applesoft. Yes, there is bad code as well as
brilliant code since Applesoft is a collection of routines that were written by a collection of very unique
individuals. I would hope that eventually, someday, Apple Computer, Inc., may actually publish the
Applesoft source code though the number of interested parties is exponentially dwindling to merely a hair
above zero.

Walland Philip Vrbancic, Jr., 2025 February 14

